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Abstract

We study the notion of robustness in stable match-
ing problems. We first define robustness by intro-
ducing (a, b)-supermatches. An (a, b)-supermatch
is a stable matching in which if a pairs break up it is
possible to find another stable matching by chang-
ing the partners of those a pairs and at most b other
pairs. In this context, we define the most robust
stable matching as a (1, b)-supermatch where b is
minimum. We show that checking whether a given
stable matching is a (1, b)-supermatch can be done
in polynomial time. Next, we use this procedure
to design a constraint programming model, a local
search approach, and a genetic algorithm to find the
most robust stable matching. Our empirical evalu-
ation on large instances show that local search out-
performs the other approaches.

1 Introduction
Heraclitus, the Greek philosopher is quoted as saying that
“Change is the only constant”. Therefore, it is essential
to build robust systems that can be repaired by only minor
changes in case of an unforeseen event [Sussman, 2007]. Al-
though it is usually difficult to provide robustness to a com-
plex problem, as it may be computationally expensive, a ro-
bust solution reduces the cost of future repairs.

This paper focuses on matching problems under prefer-
ences, where the aim is to find an assignment between two
disjoint sets of agents while respecting an optimality crite-
rion. Each agent has an ordinal preference ranking over
agents of the other set. These types of problems have been
widely studied by different research communities such as
computer scientists and economists over the years; in fact, the
2012 Nobel Prize for Economics was awarded to Shapley and
Roth for their work on stable allocations. Some of the variants
can be listed as assigning residents to hospitals (HR), match-
ing men and women to find stable marriages (SM) [Gale and
Shapley, 1962; Gusfield and Irving, 1989], and finding donors
for kidney patients [Roth et al., 2005].

Stable Marriage (SM) [Gale and Shapley, 1962] is the first
and the most studied variant of these problems. In SM, the
sets of agents correspond to men and women. The goal is to

find a matching M between men and women where each per-
son is matched to at most one partner from the opposite sex
such that there is no man and woman that prefers each other
to their situations in M . Such a matching is called stable.
We primarily work on the stable marriage problem, but the
problem is also meaningful in the context of other matching
variants.

We introduce the notion of (a, b)-supermatches as a mea-
sure of robustness for SM. A stable matching M is called
an (a, b)-supermatch if any a agents decide to break their
matches in M , thereby breaking a pairs, it is possible to
“repair” M (i.e., find another stable matching) by chang-
ing the assignments of those a agents and at most b others.
This concept is inspired by the notion of (a, b)-supermodels
in Boolean satisfiability [Ginsberg et al., 1998] and super
solutions in constraint programming [Hebrard et al., 2004;
Hebrard, 2007]. When we mention a (or b) as the number of
agents, we always refer to the agents from the same set.

In order to give additional insight into the problem we mo-
tivate robustness on the Hospital/Residents (HR) problem.
The HR problem is a one-to-many generalization of SM. In
HR, each hospital has a capacity and a preference list in which
they rank the residents. Similarly, each resident has a prefer-
ence list over the hospitals. A (1, b)-supermatch means that
if a resident wants to leave his assigned hospital or a hospital
does not want to have one of its current residents, it is possi-
ble to move that resident to another hospital by also moving
at most b other residents to other hospitals. By minimising b,
we can ensure that the required number of additional reloca-
tions to provide a repair is minimal and therefore the solution
is robust. In practice, the most robust matching minimises the
cost for recovering from unwanted and unforeseen events.

The first contribution of this paper is a polynomial time
procedure to verify whether a given stable matching is a
(1, b)-supermatch. Next, based on this procedure, we design
a constraint programming (CP) model, as well as local search
(LS) and genetic algorithm (GA) to find the most robust sta-
ble matching based on the polynomial time procedure. Last,
we give empirical evidence that the local search algorithm is
by far the most efficient approach to tackle this problem.

The structure of the paper is as follows. In Section 2, the
notations and the basics of the stable marriage problem are
introduced. In Section 3 our polynomial-time method is pro-
posed. Next, we give our meta-heuristic algorithms in Sec-



tion 4. Last, we present our experimental study on random
instances in Section 5. The reader is referred to our technical
report in [Genc et al., 2017b] for full details including the CP
model.

2 Background & Notations
The Stable Marriage problem takes as input a set of men
U = {m1,m2, . . . ,mn1

} and a set of women W =
{w1, w2, . . . , wn2

} where each person has an ordinal pref-
erence list over people of the opposite sex. For the sake of
simplicity, we suppose in the rest of the paper that n1 = n2
(denoted by n), and that each person expresses a complete
preference ranking over the set of the opposite sex. We also
use m to denote a man in U , and w to denote a woman in W .
For a complete background, we refer the reader to [Gusfield
and Irving, 1989; Manlove, 2013].

A matching M is a one-to-one correspondence between
men and women. For each man m, M(m) = w is called
the partner of m in M . In the latter case, we denote by
M(w) = m. We shall sometimes abuse notation by con-
sidering M as a set of pairs. In that case, a pair 〈m,w〉 ∈M
iff M(m) = w. A pair 〈m,w〉 is said to be blocking a match-
ing M if m prefers w to M(m) and w prefers m to M(w).
A matching M is called stable if there exists no blocking pair
forM . A pair 〈m,w〉 is said to be stable if it appears in a sta-
ble matching. Also, a pair 〈m,w〉 is fixed if 〈m,w〉 appears
in every stable matching.

The structure that represents all stable matchings forms a
lattice M . In this lattice, the man-optimal matching is de-
noted by M0 and the woman-optimal (man-pessimal) match-
ing is denoted byMz . A stable matchingMi dominates a sta-
ble matching Mj , denoted by Mi �Mj , if every man prefers
his partner in Mi to Mj or is indifferent between them. The
size of a lattice can be exponential as the number of all sta-
ble matchings can be exponential [Irving and Leather, 1986].
Therefore, making use of this structure is not practical.

Let M be a stable matching. A rotation ρ =
(〈mk0

, wk0
〉, 〈mk1

, wk1
〉, . . . , 〈mkl−1

, wkl−1
〉) (where l ∈

N∗) is an ordered list of pairs in M such that changing the
partner of each man mki from wki to wki+1 (the operation +1
is modulo l) leads to a stable matching M/ρ. The latter is
said to be obtained after eliminating ρ from M . In this case,
we say that 〈mki , wki〉 is eliminated by ρ, 〈mki , wki+1〉 is
produced by ρ, and that ρ is exposed in M . For each 〈m,w〉
such that 〈m,w〉 /∈ M0, there exists a unique rotation ρpm,w

that produces 〈m,w〉. Similarly, if 〈m,w〉 /∈ Mz there is a
unique rotation ρem,w

that eliminates 〈m,w〉. Note that it is
always the case that M (strictly) dominates M/ρ.

There exists a partial order for rotations. A rotation ρ′ is
said to precede another rotation ρ (denoted by ρ′ ≺≺ ρ), if ρ′
is eliminated in every sequence of eliminations that starts at
M0 and ends at a stable matching in which ρ is exposed [Gus-
field and Irving, 1989]. Note that this relation is transitive,
that is, ρ′′ ≺≺ ρ′ ∧ ρ′ ≺≺ ρ =⇒ ρ′′ ≺≺ ρ. Two rotations
ρ and ρ′ are said to be incomparable if ρ does not precede ρ′
and vice versa. The structure that represents all rotations and
their partial order is a directed graph called rotation poset de-
noted by Π = (V, E). Each rotation corresponds to a vertex

in V and there exists an edge from ρ to ρ′ if ρ precedes ρ′. The
number of rotations is bounded by n(n − 1)/2 and the num-
ber of arcs is O(n2) [Gusfield and Irving, 1989]. It should be
noted that the construction of Π can be done in O(n2).

Predecessors of a rotation ρ in a rotation poset are denoted
by N−(ρ) and successors are denoted by N+(ρ). Later, we
shall need transitivity to complete these lists. Therefore, we
denote by N−t (ρ) (respectively N+

t (ρ)) the predecessors (re-
spectively successors) of a rotation ρ including transitivity.

A closed subset S is a set of rotations such that for any
rotation ρ in S, if there exists a rotation ρ′ that precedes ρ
then ρ′ is also in S.

Below is a theorem and a corollary from [Gusfield and
Irving, 1989] mainly used in some proofs in the next section.
We slightly change few notations.

Theorem 1 (Theorem 2.5.7). i) There is a one-one corre-
spondence between the closed subsets of Π and the stable
matchings of M . ii) S is the closed subset of rotations of Π
corresponding to a stable matching M if and only if S is the
(unique) set of rotations on every M0-chain in M ending at
M . Further, M can be generated from M0 by eliminating the
rotations in their order along any of these paths, and these are
the only ways to generate M by rotation eliminations start-
ing from M0. iii) If S and S′ are the unique sets of rotations
corresponding to distinct stable matchings M and M ′, then
M dominates M ′ if and only if S ⊂ S′.
Corollary 1 (Corollary 3.2.1). Every man-woman pair
〈m,w〉 is in at most one rotation. Hence there are at most
n(n − 1)/2 rotations in an instance of the stable marriage
problem of size n.

By Theorem 1, every closed subset in the rotation poset
corresponds to a stable matching. We denote by X(S) the set
of men that are included in at least one of the rotations in S.

We introduce here a notion that is important to our measure
of robustness. Let Mi and Mj be two stable matchings. The
distance d(Mi,Mj) is the number of men that have different
partners in Mi and Mj . A matching Mk is closer to Mi than
Mj if d(Mi,Mk) < d(Mi,Mj). Let a, b ∈ N. A stable
matching M is said to be an (a, b)-supermatch if for any set
Ψ ⊂ M of a stable pairs that are not fixed, there exists a
stable matching M ′ such that M ′ ∩ Ψ = ∅ and d(M,M ′) −
a ≤ b.

3 Checking (1, b)-supermatch in Polynomial
Time

A preliminary version of this section appeared in [Genc et
al., 2017a]. In this section we first recall the basics, and then
show how to find or verify the closest stable matching of a
given stable matching with an unwanted couple. Throughout
this section, we suppose that M is the given stable matching,
S its closed subset, and 〈m,w〉 ∈ M is a non-fixed (stable)
pair to remove from M .

The closest matching to M that does not include 〈m,w〉
is a matching M∗ in which either 〈m,w〉 was eliminated or
not produced in any sequence of rotation eliminations starting
from M0 leading to M∗. Hence, if 〈m,w〉 /∈ M0 then ρpm,w

exists, and there is a set of stable matchings Su that dominate



M and do not include 〈m,w〉. Similarly, if 〈m,w〉 /∈ Mz

then ρem,w exists, and there is a set of stable matchings Sd,
dominated by M and not including 〈m,w〉.

If 〈m,w〉 /∈ M0, we define a specific set of rotations S∗mUP
as follows:

S∗mUP = S \ ({ρpm,w
} ∪ {N+

t (ρpm,w
) ∩ S}). (1)

If 〈m,w〉 /∈ Mz , we define a specific set of rotations
S∗mDOWN as follows:

S∗mDOWN = S ∪ {ρem,w
} ∪ {N−t (ρem,w

) \ S}. (2)

Observe first that S∗mUP and S∗mDOWN are in fact closed sub-
sets since S is a closed subset. Let M∗mUP (respectively
M∗mDOWN) be the stable matching corresponding to S∗mUP (re-
spectively S∗mDOWN). By construction, we have M∗mUP ∈ Su

and M∗mDOWN ∈ Sd. We show later that any stable matching
Mi /∈ {M∗mUP ,M

∗m
DOWN} that does not include the pair 〈m,w〉

cannot be closer to M than M∗mUP or M∗mDOWN.
Let us illustrate these terms on a sample stable marriage

instance. Consider the stable marriage instance specified by
the preference lists of 7 men/women in Table 1. For the sake
of clarity, we denote each man mi with i and each woman wj

with j.
Figure 1 represents the rotation poset and all the rotations

associated with this sample. In Figure 2, we give the lattice
of all stable matchings. There exists two vectors for each
stable matching. The first vector represents the set of men and
the second vector represents the partner of each man in the
matching. Each edge from M to M ′ on the lattice is labelled
with the rotation ρ such that M ′ is obtained after exposing ρ
in M .

As an example, let current stable matching be M5, and the
closed subset associated with it be S5 = {ρ0, ρ1, ρ2}. Table 2
illustrates for each man m the matchings S∗mUP and S∗mDOWN if
they exist.

m0 0 6 5 2 4 1 3 w0 2 1 6 4 5 3 0
m1 6 1 4 5 0 2 3 w1 0 4 3 5 2 6 1
m2 6 0 3 1 5 4 2 w2 2 5 0 4 3 1 6
m3 3 2 0 1 4 6 5 w3 6 1 2 3 4 0 5
m4 1 2 0 3 4 5 6 w4 4 6 0 5 3 1 2
m5 6 1 0 3 5 4 2 w5 3 1 2 6 5 4 0
m6 2 5 0 6 4 3 1 w6 4 6 2 1 3 0 5

Table 1: Preference lists for men (left) and women (right) for a sam-
ple stable marriage instance of size 7.

Figure 1: Rotation poset of the instance given in Table 1.

Figure 2: The lattice of all stable matchings corresponding to the
instance given in Table 1.

〈m,w〉 ρpm,w
ρem,w

S∗mUP S∗mDOWN
〈0, 4〉 ρ2 ρ3 {ρ0, ρ1} {ρ0, ρ1, ρ2, ρ3}
〈1, 5〉 ρ1 ρ5 {ρ0} {ρ0, ρ1, ρ2, ρ4, ρ5}
〈2, 6〉 - ρ4 - {ρ0, ρ1, ρ2, ρ4}
〈3, 3〉 - ρ5 - {ρ0, ρ1, ρ2, ρ4, ρ5}
〈4, 1〉 - ρ3 - {ρ0,ρ1, ρ2, ρ3}
〈5, 2〉 ρ2 - {ρ0, ρ1} -
〈6, 0〉 ρ1 ρ4 {ρ0 } {ρ0, ρ1, ρ2, ρ4}

Table 2: The repair closed subsets S∗m
UP and S∗m

DOWN for M5.

We give few lemmas in order to show that the closest stable
matching to M when breaking the pair 〈m,w〉 is either S∗mUP
or S∗mDOWN.

Lemma 1. Given two incomparable rotations ρ and ρ′,
X({ρ}) ∩X({ρ′}) = ∅.

Proof. By definition of incomparability, if two rotations are
incomparable, it means that they modify a set of men who do
not require modifications from the other first. Therefore the
sets of men are distinct.

Lemma 2. Given three stable matchings Mi,Mj and Mk

where Mi � Mj � Mk, then d(Mj ,Mk) ≤ d(Mi,Mk) and
d(Mi,Mj) ≤ d(Mi,Mk).

Proof. Using the properties of domination and the closed
subsets in Theorem 1, we can infer Si ⊂ Sj ⊂ Sk.

Assume to the contrary that d(Mj ,Mk) > d(Mi,Mk).
This situation occurs only if a set of pairs that are present
in Mi are eliminated to obtain Mj and then re-matched with
the same partners they had in Mi to get Mk. However, this
contradicts Corollary 1. For similar reasons, d(Mi,Mj) <
d(Mi,Mk).



The case where stable matchings have the same distance
such as d(Mi,Mj) = d(Mi,Mk), if the rotation set in the
difference sets Sj \ Si, Sk \ Si, and Sk \ Sj modify the same
set of men.
Lemma 3. If there exists a stable matching Mx that does not
contain 〈m,w〉, dominates M and different from M∗mUP , then
Mx dominates M∗mUP .

Proof. M∗mUP � M by definition. Suppose by contradiction
that there exists an Mx such that 〈m,w〉 6∈ Mx and M∗mUP �
Mx �M . It implies that S∗mUP ⊂ Sx ⊂ S. In this case, (Sx \
S∗mUP ) ⊂

{
{ρpm,w

} ∪ {N+
t (ρpm,w

) ∩ S}
}

. However, this set
contains ρpm,w and the rotations preceded by ρpm,w . Adding
any rotation from this set to Sx results in a contradiction by
either adding 〈m,w〉 to the matching, thereby not breaking
that couple, or because the resulting set is not a closed subset.

Lemma 4. If there exists a stable matching Mx that does not
contain 〈m,w〉 dominated by M but different from M∗mDOWN,
then M∗mDOWN dominates Mx.

Proof. Similar to the proof above, suppose that there exists
an Mx such that 〈m,w〉 6∈ Mx and M � Mx � M∗mDOWN.
We have S ⊂ Sx ⊂ S∗mDOWN. It implies (Sx \ S) ⊂{
{ρem,w

} ∪ {N−t (ρem,w
) \ S}

}
. This set contains the ro-

tation ρem,w
that eliminates the pair and the rotations pre-

ceding ρem,w
. In order to add ρem,w

all other rotations must
be added to form a closed subset. If all rotations are added,
S = S∗mDOWN which results in a contradiction.

Lemma 5. For any stable matching Mi incomparable with
M such that Mi does not contain the pair 〈m,w〉, M∗mUP is
closer to M than Mi.

Proof. Let Si be the closed subset corresponding to Mi, and
S be that corresponding to M .

First, we consider the case in which Si ∩ S = ∅. If the
closed subsets have no rotations in common the rotations
in these sets are incomparable. Using Lemma 1, X(Si) ∩
X(S) = ∅. Therefore, d(Mi,M) = |X(Si)| + |X(S)|,
whereas d(M∗mUP ,M) ≤ |X(S)|.

Second, we consider the case in which Si ∩ S 6= ∅. Let
Mc be the closest dominating stable matching of both Mi

and M∗mUP , along with Sc as its corresponding closed subset.
Using Lemma 2 we know that d(M∗mUP ,Ms) ≤ d(Mc,Ms),
where d(Mc,Ms) = |X(S \ Sc)|.

Using Lemma 1 we know thatX(Si\Sc)∩X(S\Sc) = ∅.
Therefore, d(Mi,M) = |X(Si \Sc)|+ |X(S \Sc)|. By sub-
stituting the formula above, d(Mi,M) ≥ |X(Si \ Sc)| +
d(M∗mUP ,M). Using the fact that |X(Si \ Sc)| > 0 from
the definition of Mi, we can conclude that d(Mi,M) >
d(M∗mUP ,M).

The following theorem is a direct consequence of Lem-
mas 3, 4, 5.
Theorem 2. The closest stable matching of a stable match-
ing M given the unwanted pair 〈m,w〉 is either M∗mUP or
M∗mDOWN.

m M∗mUP M∗mDOWN dmup dmdown bm
0 M2 M8 2 2 1
1 M1 M7 4 4 3
2 - M6 ∞ 2 1
3 - M7 ∞ 4 3
4 - M8 ∞ 2 1
5 M2 - 2 ∞ 1
6 M1 M6 4 2 1

Table 3: The repair stable matchings M∗m
UP and M∗m

DOWN for each
man in M5 and the distances between them.

We show that checking if a stable matching is a (1, b)-
supermatch can be performed in O(n × |V|) time after a
O(n2 + |V|2) preprocessing step. First, the pre-processing
step consists of building the poset graph (O(n2)), the lists
N−t (ρ), N+

t (ρ) for each rotation ρ (O(|V|2)), and ρem,w and
ρpm,w for each pair 〈m,w〉 whenever applicable (O(n2)).
Next, we compute S∗mUP and S∗mDOWN for each man. Note
that S∗mUP and S∗mDOWN can be constructed in O(|V|) time (by
definition of S∗mUP and S∗mDOWN) for each man m. Note that
d(M∗mUP ,M) is equal to the number of men participating in
the rotations that are eliminated from S to obtain S∗mUP . Sim-
ilarly, d(M∗mDOWN,M) is equal to the number of men partic-
ipating in the rotations that are added S to obtain S∗mDOWN.
Last, if b < d(M∗mUP ,M) − 1 and b < d(M∗mDOWN,M) − 1,
we know that it is impossible to repair M when m needs to
change his partner with at most b other changes. Otherwise,
M is a (1, b)-supermatch.

As an illustration, Table 3 shows the stable matchings cor-
responding to the closed subsets given in Table 2 and the
distances between the current stable matching M5 to each
one of them. The distances are denoted as dmup and dmdown

in the table, where for each man m, dmup = d(M5,M
∗m
UP )

and dmdown = d(M5,M
∗m
DOWN), respectively. If M∗mUP does

not exist for a man m, then dmup is denoted by ∞ (a similar
notation is used when M∗mDOWN does not exist). Last, bm rep-
resents the repairing cost of each man m and calculated by
bm = min(dmup, d

m
down)− 1.

The robustness of a stable matching is measured by the
worst case repair cost over all men involved, b = max{bi | i ∈
{1...n}}. Hence, M5 is a (1,3)-supermatch.

4 Metaheuristics
In this section, we describe two models, namely Genetic Al-
gorithm and Local Search using the polynomial time verifi-
cation algorithm to find (1,b)-supermatches and subsequently
the most robust stable matching.

4.1 Genetic Algorithm
Genetic algorithms are being used extensively in optimiza-
tion problems as an alternative to traditional heuristics. They
are compelling robust search and optimization tools, which
work on the natural concept of evolution, based on natural
genetics and natural selection. Holland introduced the GAs
and he has also shown how to apply the process to vari-
ous computationally difficult problems [Holland, 1975; 1992;



Bäck, 1996]. The model that we propose to find the most ro-
bust stable matching is detailed as follows:

Initialization. A number of random stable matchings are
generated for constructing the initial population. Recall that
each closed subset in the rotation poset corresponds to a sta-
ble matching. The random stable matching generation is per-
formed by selecting a random rotation from the rotation poset
and adding all of its predecessors to the rotation set to con-
struct a closed subset. Recall that the set of all predecessors
of a given node is N−t (ρ).

Evaluation. For each stable matching Mi, we denote by
bi its b value. At this step, we compute the value bi of each
stable matching Mi in the population. Then, a fitness value
vi = bi is assigned to each Mi in the population. Then, the
values vi are normalised in the interval [0, 1].

Evolution. The evolution step consists in selecting sta-
ble matchings from the population using the roulette wheel
selection method [Goldberg, 1989], then applying crossover
and mutation on the selected matchings.

• Crossover. Given two stable matchings and their corre-
sponding closed subsets S1 and S2, one random rotation
is selected from each subset. Let ρ1 and ρ2 denote the
randomly selected rotations. If ρ1 6∈ S2, then ρ1 and all
its predecessors that are not included in S2 are added to
S2 to form a new closed subset. This new closed sub-
set corresponds to one of the children stable matchings
produced by crossover. Similarly, the same process is re-
peated for S1 and another stable matching is obtained. If
the rotations are already in the closed subsets, no action
is taken.

• Mutation. Given the closed subset S of a stable match-
ing, a random rotation ρ from V is selected. If ρ 6∈ S,
then ρ and all its required predecessors to form a closed
subset are added to S. However, if ρ ∈ S then ρ and all
its successors in S are removed from S. Removing the
successors will also yield in a stable matching.

For each created stable matching, the method described in
the end of Section 3 is called to compute the b value. Recall
that this procedure takes O(n × |V|) time after a O(n2 +
|V|2) preprocessing step. In order to speed up this process
from a practical point of view, in our experiments an extra
data structure is being used to memorize the fitness value of
already generated stable matchings.

The algorithm repeats evolution phase until the termina-
tion criteria met and the phase consists of calling evalua-
tion, crossover and mutation subsequently. In both crossover
and mutation, the worst case time complexity for one call
is bounded by O(|V|) since the set of all predecessors (re-
spectively successors) of a given node isN−t (ρ) (respectively
N+

t (ρ)).

4.2 Local Search
In our local search model, we use the well-known iterated lo-
cal search with restarts [Stützle, 1998; Lourenço et al., 2010].
The first step of the algorithm is to find a random solution to
start with. A random stable matching M is created by us-
ing the method defined in Initialization step in Section 4.1.

Then, a neighbouring stable matching set is created using the
rotation poset.

A neighbour in this context is defined as a stable match-
ing that differs only by one rotation from the closed subset
of M . Let S denote the closed subset of M and Ls the set
of leaf rotations in S. Removing one rotation ρi ∈ Ls from
S corresponds to a dominating neighbour of M . Removing
each ρi ∈ Ls one at a time corresponds to a different neigh-
bour. Similarly, let Ns denote the set of rotations that are not
included in S and either those rotations have an in-degree of
0 or all of their predecessors are in S. In the same manner,
adding a rotation from Ns to S at a time corresponds to a
neighbour of M .

Figure 3 illustrates a sample rotation poset, where the
closed subset is S = {ρ0, ρ1, ρ3, ρ4, ρ5, ρ7}. Then, iden-
tification of the leaf nodes in this set would be as Ls =
{ρ1, ρ4, ρ7}, since none of their children are included in S.
Similarly, the neighbour rotations in Ns = {ρ2, ρ6} since all
their parents are included in the closed subset S.

These two sets correspond to rotations, where removal of
any rotation in Ls from S at a time does not require removal
of any other rotations in order to obtain another closed subset,
i.e. a neighbour. Likewise, adding any rotation from Ns to S
does not require adding any additional rotations to obtain a
closed subset.

At each iteration, if a neighbour has lower b than M , in
other words, it is a more robust solution, the search contin-
ues by finding the neighbours of the new solution. The best
solution is kept as the best solution found so far in the whole
search process. There is an iteration limit, that indicates the
depth of search for neighbours of a randomly created stable
matching. After the iteration limit is met, a new random sta-
ble matching is generated and the neighbour search continues
with that stable matching. If there is no improvement in the
best solution for a predetermined number of iterations (cut-
off limit), the search terminates.

Notice that there can be at most |V| neighbours of a stable
matching. Thus, creating neighbours and finding their respec-
tive b values is O(n× |V|2).

Figure 3: Illustration of the sets Ls (ρ1, ρ4, ρ7) and Ns (ρ2, ρ6) on
a sample rotation poset for a given closed subset S.



5 Experiments
We experimentally evaluate the three models for finding the
most robust stable matching. The CP model is implemented
in Choco 4.0.1 [Prud’homme et al., 2016] and the two meta-
heuristics are implemented in Java. All experiments were
performed on DELL M600 with 2.66 Ghz processors under
Linux.

We ran each model with 4 different randomization seeds
for each instance. The time limit is fixed to 20 minutes for
every run. An additional cut-off is used for local search (LS)
and genetic algorithm (GA) as follows: if the solution qual-
ity does not improve for 10000 iterations, we terminate the
search. The genetic algorithm applies a crossover at each it-
eration unless the roulette wheel selection selects the fittest
stable matching from the population. Additionally, the prob-
ability of applying mutation on a randomly selected stable
matching is fixed as 80%. For local search, we chose to restart
the local search with a randomly generated stable match-
ing every 50 iterations. Last, the CP model (CP) uses the
weighted degree heuristic [Boussemart et al., 2004] with ge-
ometric restarts.

We use two sets of random instances. The first set contains
500 instances. The number of men for this set is in the set
{300+50∗k}where k ∈ {1, 5}. The second set contains 600
large instances of size {1200 + 50 ∗k} where k ∈ {1, 6}. We
generated 100 instances for each size for both benchmarks.

In Figures 4 and 5 we plot the normalized objective
value of the best solution found by the search model h ∈
{CP,GA,LS} (x-axis) after a given time (y-axis). Let h(I)
be the objective value of the best solution found using model
h on instance I and lb(I) (resp. ub(I)) the lowest (resp. high-
est) objective value found by any model on I . The formula
below gives a normalized score in the interval [0, 1]:

score(h, I) =
ub(I)− h(I) + 1

ub(I)− lb(I) + 1

The value of score(h, I) is equal to 1 if h has found the
best solution for this instance among all models, decreases
as h(I) gets further from the optimal objective value, and is
equal to 0 if and only if h did not find any solution for I .
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Figure 4: Search Efficiency on the First Set of Instances
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Figure 5: Search Efficiency on the Second Set of Instances

Note that the CP model runs out of memory for large in-
stances. Therefore, we do not plot it in Figure 5.

The outcome from both figures is clear. Local search is
efficient both in the quality of the solutions, and in runtime.
Indeed, in the first plot, the best solutions are found by LS
and CP. However, CP takes much longer time. Note that in
Figure 4, CP and LS both find almost always the same objec-
tive, and in fact CP claims that the solution is optimal in all
instances except one.

The GA model does not seem to be well suited for this
problem. In the first data set it does not find the best solutions
in all instances. Moreover, it takes much longer time than CP
and LS for finding good quality solutions.

The results in Figure 5 are more spectacular for local
search. Local search does not always find the best solutions
since the normalised objective ratio does not exceed 90%.
However, the overall performance is clearly better than GA
in both quality and runtime.

6 Conclusions
We studied the notion of robustness in stable matching prob-
lems by using the notion of (a, b)-supermatch. We first
showed that the problem of finding a stable matching Mi that
is closest to a given stable matchingM if a pair (man,woman)
decides to break up in M can be found in polynomial time.
Then, we used essentially this procedure to model the prob-
lem of finding the most robust stable matching using a CP
formulation, local search, and genetic algorithm. Last, we
empirically evaluated these models on randomly generated
instances and showed that local search is by far the best model
to find robust solutions.

To the best of our knowledge, this notion of robustness in
stable matchings has never been proposed before. We hope
that the proposed problem will get some attention in the fu-
ture as it represents a challenge in real-world settings.
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