

Combining forces to solve Combinatorial Problems, a preliminary approach

Mohamed Siala, Emmanuel Hebrard, and Christian Artigues

LAAS-CNRS

Tarbes, France

Mohamed SIALA

April 2013

EDSYS Congress

Outline

Context

- Background
- SAT-Solving with Global Constraints
- The $\operatorname{ATMOSTSEQCARD}$ Constraint
- Experiments
- Conclusion & Future work

Context

Background SAT-Solving with Global Constraints The ATMOSTSEQCARD Constraint Experiments Conclusion & Future work

Combinatorial Problems

Context

- Finite domain variables
- a fixed number of constraints over these variables

Context

Background SAT-Solving with Global Constraints The ATMOSTSEQCARD Constraint Experiments Conclusion & Future work

Combinatorial Problems

Context

- Finite domain variables
- a fixed number of constraints over these variables
- Is there a solution satisfying these constraints ?

Context

Background SAT-Solving with Global Constraints The ATMOSTSEQCARD Constraint Experiments Conclusion & Future work

Combinatorial Problems

Context

- Finite domain variables
- a fixed number of constraints over these variables
- Is there a solution satisfying these constraints ?

Combinatorial Problems

- The size of the search tree is exponential!
- There is no known algorithm for solving them in polynomial time
- NP-Complete/NP-Hard Problems

LAAS-CNRS

Constraint Satisfaction Problems

CSP

A constraint satisfaction problem (CSP) is a triplet $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- \mathcal{X} is a set of variables.
- \mathcal{D} is the related sets of values.
- C is a set of constraints.

A solution of a CSP is an assignment w satisfying all the constraints.

LAAS-CNRS

Constraint Satisfaction Problems

CSP

A constraint satisfaction problem (CSP) is a triplet $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- \mathcal{X} is a set of variables.
- \mathcal{D} is the related sets of values.
- C is a set of constraints.

A solution of a CSP is an assignment w satisfying all the constraints.

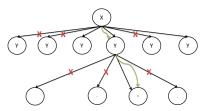
Example

- *X* =< *x*, *y* >
- $D = < \{1, 2, 3\}, \{4, 5\} >$
- $C_1 = \{x \text{ is even}\}$
- $C_2 = \{x + y = 6\}$

Propagation

- A propagator (or filtering algorithm) aims to remove some values that are inconsistent.
- Correctness & Checking

Figure: Propagation impact



Global constraints

- A global constraint is constraint over *n* variables.
- A global constraint captures a sub-problem.
- A global constraint can be used to solve different problems.
- A global constraint \leftrightarrow specific propagator.

Propagation & Global Constraints ?

AllDifferent(X, Y, Z)

$X, Y, Z, D_X = D_Y = D_Z = \{1, 2\}$			
Decomposition	Global Constraint		
$C_1: X \neq Y; C_2: Y \neq Z; C_3: Z \neq X;$	AllDifferent(X,Y,Z)		
Propagate(C_1) :	$D_X = D_Y = D_Z = \{1, 2\}$		
$C_1: X \neq Y$	\rightarrow Failure!		
$D_X = D_Y\{1,2\}$			
\rightarrow No propagation!			
$Propagate(C_2), Propagate(C_3) : No propagation$			

Learning in CP

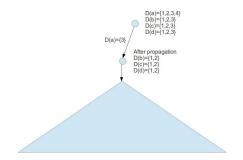
- a,b,c,d integer variables pairwise different.
- $D(a) = \{1, 2, 3, 4\}, D(b) = \{1, 2, 3\}, D(c) = \{1, 2, 3\}, D(d) = \{1, 2, 3\}$
- $x_1, ... x_n$ n variables and $C_1, ... C_m$ m Constraints over these variables
- suppose that we branch on a, x₁..x_n, b, c, d

LAAS-CNRS

Learning in CP

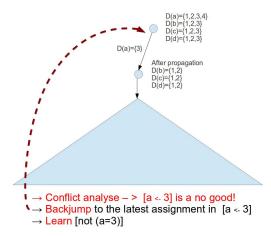
- a,b,c,d integer variables pairwise different.
- $D(a) = \{1, 2, 3, 4\}, D(b) = \{1, 2, 3\}, D(c) = \{1, 2, 3\}, D(d) = \{1, 2, 3\}$
- $x_1, ... x_n$ n variables and $C_1, ... C_m$ m Constraints over these variables
- suppose that we branch on a, x₁..x_n, b, c, d

With a standard CP-Solver



Learning in CP

With learning :



LAAS-CNRS

LAAS-CNRS

Boolean Satisfiability (SAT)

A Sat-Problem

- Boolean variables
- CNF : a set of clauses (i.e. a set of disjunctions over these variables and their negations).
- For instance : $C \equiv (a \lor b) \land (\neg c \lor d \lor \neg e)$

Why SAT?

- 1 There is a community working on SAT-Problems!
- Ø Modern SAT-Solvers are able to deal with millions of variables and clauses

LAAS-CNRS

Satisfiability Modulo Theories

Suppose now that we want to solve : $\phi \equiv ((x + y) = 32) \lor (a > 17)) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2)$

LAAS-CNRS

Satisfiability Modulo Theories

Suppose now that we want to solve : $\phi \equiv ((x + y) = 32) \lor (a > 17)) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2)$ \Rightarrow It looks like a CNF but ...

LAAS-CNRS

Satisfiability Modulo Theories

Suppose now that we want to solve :

$$\phi \equiv ((x+y)=32) \lor (a>17)) \land ((w^3+y=0.53) \lor p_1 \lor \neg p_2)$$

- \Rightarrow It looks like a CNF but \ldots
- $\Rightarrow \mathsf{Satisfiability}$

LAAS-CNRS

Satisfiability Modulo Theories

Suppose now that we want to solve :

$$\phi \equiv ((x+y)=32) \lor (a>17)) \land ((w^3+y=0.53) \lor p_1 \lor \neg p_2)$$

- \Rightarrow It looks like a CNF but \ldots
- \Rightarrow Satisfiability Modulo Theories

LAAS-CNRS

Satisfiability Modulo Theories

Suppose now that we want to solve :

- $\phi \equiv ((x + y) = 32) \lor (a > 17)) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2)$
- \Rightarrow It looks like a CNF but ...
- \Rightarrow Satisfiability Modulo Theories
- \Rightarrow First order formulas w.r.t some theories

LAAS-CNRS

Satisfiability Modulo Theories

Suppose now that we want to solve :

$$\phi \equiv ((x + y) = 32) \lor (a > 17)) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2)$$

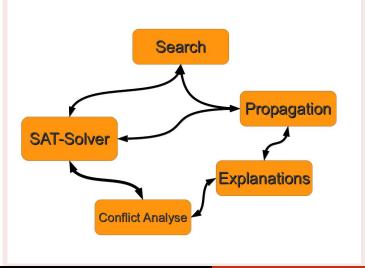
- \Rightarrow It looks like a CNF but \ldots
- \Rightarrow Satisfiability Modulo Theories
- \Rightarrow First order formulas w.r.t some theories

Lazy SMT

- 1 Exploiting SAT by abstracting the formula
- O Theory Propagation
- **3** Theory explanations for conflicts and propagation

LAAS-CNRS

Towards a hybrid solver



LAAS-CNRS

Definition

$\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \le u) \land (\sum_{i=1}^{n} x_i = d)$$

LAAS-CNRS

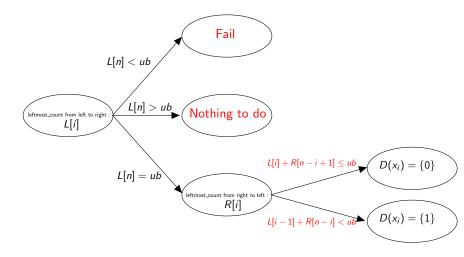
Definition

 $\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \wedge (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD $(2, 4, 4, [x_1, \ldots, x_7])$

Filtering the Domains



LAAS-CNRS

Explaining the ATMOSTSEQCARD constraint

Key idea

Let $S^{\cdot*}$ be a sequence defined as $\forall i \in [1, n]$, the domain of x_i in $S^{\cdot*}$ (denoted by $D^{\cdot*}(x_i)$) is defined as follows : $D^{\cdot*}(x_i) = \begin{cases} \{0, 1\}, \text{ if } (D(x_i) = \{0\} \text{ and } max_i = u) \\ \{0, 1\}, \text{ if } (D(x_i) = \{1\} \text{ and } max_i \neq u) \\ D(x_i) \text{ otherwise} \end{cases}$

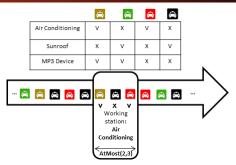
Theorem

Let L^{*} the result of leftmost_max on S^{*} . $\forall i \in [1, n], L^{*}[i] = L[i].$ Context Background SAT-Solving with Global Constraints The ATMOSTSEQCARD Constraint

Experiments Conclusion & Future work

LAAS-CNRS

Car-sequencing



Constraints

- Each class c is associated with a demand D_c .
- For each option *j*, each sub-sequence of size *q_j* must contain at most *u_j* cars requiring the option *j*.

Context Background SAT-Solving with Global Constraints The ATMOSTSEQCARD Constraint

Experiments Conclusion & Future work

Some results ...

Easy Sat			
	# solved	# TIME	
mcp	368 / 368 100 %	0.17	
hybrid	368 / 368 100 %	0.14	
hybridSwitch	368 / 368 100 %	0.21	
DefaultHybrid	368 / 368 100 %	0.33	
sate2	368 / 368 100 %	3.15	
sate3	368 / 368 100 %	3.01	

~

Hard Sat

	# solved	# TIME
mcp	35 / 35 100%	16.72
hybrid	34 / 35 97%	3.05
hybridSwitch	34 / 35 97%	2.66
DefaultHybrid	16 / 35 45%	287.84
sate2	28 / 35 80%	289.32
sate3	31 / 35 88%	60.99

Context Background SAT-Solving with Global Constraints The ATMOSTSEQCARD Constraint Experiments

Conclusion & Future work

Some results ...

Unsat instances

	# solved	# TIME
mcp	23 / 136 16%	300.55
hybrid	23 / 136 16%	300.55
hybridSwitch	36 / 136 26%	351.86
DefaultHybrid	35 / 136 25%	225.95
sate2	85 / 136 62%	92.45
sate3	66 / 136 48%	186.79

LAAS-CNRS

Current Contributions

- A linear time propagator for the ATMOSTSEQCARD constraint
- Explaining the ATMOSTSEQCARD constraint
- Getting started with the Hybrid solver

Future research

- Hybridisation & Hybridisation again
- Treating other problems (scheduling) in a SAT-CP context
- MiniZinc Challenge with a hybrid Solver
- Incremental SAT-Encoding for Finite Domain variables

• . . .

Thank you!

Questions?