Solving hard sequencing problems via the AtMostSeqCard constraint

Mohamed Siala, Christian Artigues, Emmanuel Hebrard, Marie-José Huguet

ROC group : Recherche Opérationnelle/Optimisation Combinatoire/Contraintes

LAAS-CNRS

Bordeaux, France

Outline

Context & Background

The $\operatorname{AtMostSeqCard}$ constraint

$\operatorname{AtMostSeqCard}$ in a Hybrid CP/SAT context

Conclusion

The ATMOSTSEQCARD constraint ATMOSTSEQCARD in a Hybrid CP/SAT context Conclusion

Context

LAAS-CNRS

- (Discrete) Combinatorial Problems
- NP-Complete/NP-Hard Problems
- Constraint Satisfaction Problems (CSP)
 - Finite domain variables
 - · Fixed number of constraints over these variables

The ATMOSTSEQCARD constraint ATMOSTSEQCARD in a Hybrid CP/SAT context Conclusion

Context

LAAS-CNRS

- (Discrete) Combinatorial Problems
- NP-Complete/NP-Hard Problems
- Constraint Satisfaction Problems (CSP)
 - Finite domain variables
 - Fixed number of constraints over these variables
 - Is there a solution satisfying these constraints ?

The ATMOSTSEQCARD constraint ATMOSTSEQCARD in a Hybrid CP/SAT context Conclusion

Context

- (Discrete) Combinatorial Problems
- NP-Complete/NP-Hard Problems
- Constraint Satisfaction Problems (CSP)
 - Finite domain variables
 - Fixed number of constraints over these variables
 - Is there a solution satisfying these constraints ?
 - Is there a solution satisfying these constraints and optimizing a cost function *f*?

The ATMOSTSEQCARD constraint ATMOSTSEQCARD in a Hybrid CP/SAT context Conclusion

Context

LAAS-CNRS

- (Discrete) Combinatorial Problems
- NP-Complete/NP-Hard Problems
- Constraint Satisfaction Problems (CSP)
 - Finite domain variables
 - Fixed number of constraints over these variables
 - Is there a solution satisfying these constraints ?
 - Is there a solution satisfying these constraints and optimizing a cost function *f*?
- CP-Solvers : Branching + Propagation

LAAS-CNRS

What is a constraint?

A 'formal' definition

A constraint C defined on a set of variables $[X_1, X_2, ..., X_n]$ defines a relation on the domains of \mathcal{X} .

Constraints can be given in

- Extension (i.e. table constraints) :
- Intention :
 - X < Y
 - X mod 4 < |Y|
 - X mod 4 < Y \land $|X| > 5 \land X \neq Y$

X_1	X ₂	X3	X_4
1	4	-8	0
-7	0	1	0
6	2	1	1
2	2	9	1

LAAS-CNRS

What is a constraint?

A 'formal' definition

A constraint C defined on a set of variables $[X_1, X_2, ..., X_n]$ defines a relation on the domains of \mathcal{X} .

Constraints can be given in

- Extension (i.e. table constraints) :
- Intention :
 - X < Y
 - X mod 4 < |Y|
 - X mod 4 < Y \land $|X| > 5 \land X \neq Y$
- Each constraint is associated to a propagator
- A Constraint can be seen as a (sub)-problem

X_1	X_2	X3	<i>X</i> ₄
1	4	-8	0
-7	0	1	0
6	2	1	1
2	2	9	1

Arc Consistency

Definition

A constraint C is Arc Consistent (AC) iff for every variable x in its scope and every value v in the current domain of x, we can extend the current assignment to be consistent while assigning v to x.

Arc Consistency

Definition

A constraint C is Arc Consistent (AC) iff for every variable x in its scope and every value v in the current domain of x, we can extend the current assignment to be consistent while assigning v to x.

If C_1 is AC and C_2 is AC, does not imply $C_3 : C_1 \land C_2$ is AC!

Example

Let X_i be integer variables.

- $C_1: \sum_{i=1}^{i=n} X_i \leq k$: is polynomial
- $C_2: \sum_{i=1}^{i=n} X_i \ge k$ is polynomial
- $C_3: C_1 \wedge C_2: \sum_{i=1}^{i=n} X_i = k$ is *NP-Hard*!

LAAS-CNRS

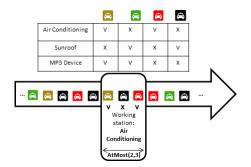
Sequencing Problems

Sequencing Constraints : enforce upper and/or lower bounds on all (some) sub-sequences of variables of a given length within a main sequence.

LAAS-CNRS

Context & Background The ATMOSTSEqCARD constraint ATMOSTSEqCARD in a Hybrid CP/SAT context Conclusion

The car-sequencing problem



Constraints

- Each class k is associated with a demand D_k .
- For each option *j*, each sub-sequence of size *q_j* must contain at most *u_j* cars requiring the option *j*.

The ATMOSTSEQCARD constraint ATMOSTSEQCARD in a Hybrid CP/SAT context Conclusion

LAAS-CNRS

Crew-rostering

				Week 1	L			W 2	W 3	W 4	d
emp ₁											17
emp ₂											17
											17
emp ₂₀											17
demande:	6;6;3	6;6;3	6;6;3	6;6;3	6;6;3	2;2;1	2;2;1				17*20

Constraints

- A required demand for each period.
- Each employee has to work 34 hours per week (17 shifts overall).
- Atmost 8h working shift per day.
- Atmost 5 days per each each 7 days period.

Definition

$\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \land (\sum_{i=1}^{n} x_i = d)$$

 X_9

Definition

$\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

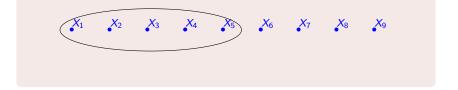
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \wedge (\sum_{i=1}^{n} x_i = d)$$

 X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8

Definition

 $\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

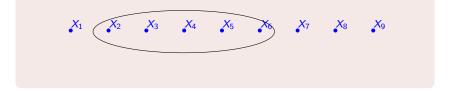
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \land (\sum_{i=1}^{n} x_i = d)$$



Definition

$\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

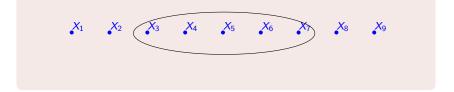
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \wedge (\sum_{i=1}^{n} x_i = d)$$



Definition

$\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

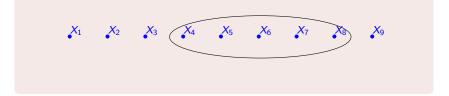
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \wedge (\sum_{i=1}^{n} x_i = d)$$



Definition

$\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

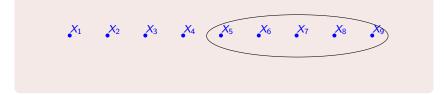
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \wedge (\sum_{i=1}^{n} x_i = d)$$



Definition

$\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

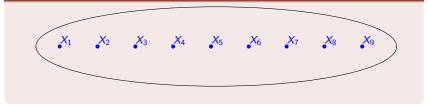
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \wedge (\sum_{i=1}^{n} x_i = d)$$



Definition

 $\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

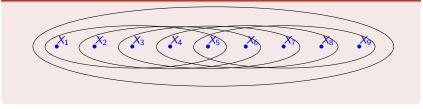
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \wedge (\sum_{i=1}^{n} x_i = d)$$



Definition

$\operatorname{ATMOSTSEQCARD}(u, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \wedge (\sum_{i=1}^{n} x_i = d)$$



Existing complexities

Gen-Sequence

- COST-REGULAR encoding: $O(2^q n)$ [Van Hoeve et al, 2009]
- Gen-Sequence: $O(n^3)$ [Van Hoeve et al, 2009]
- Flow-based Algorithm: O(n²) [Maher et al, 2008]

GSC

• GCC encoding, Does not achieve AC, NP-Hard [Puget and Régin, 1997]

The propagator

• leftmost: computes an assignment *w* maximizing the cardinality of the sequence with respect to the ATMOST constraints.

•
$$Left[i] = \sum_{j=1}^{j=i} leftmost[j].$$

• *Right*[*i*] : same as *Left* but in the reverse sense, i.e. [*x_n*, ..., *x*₁].

The propagator

- leftmost: computes an assignment *w* maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- $Left[i] = \sum_{j=1}^{j=i} leftmost[j].$
- *Right*[*i*] : same as *Left* but in the reverse sense, i.e. [*x_n*, ..., *x*₁].

$\mathcal{D}(x_i)$			0	·		·	·			0	1	0		·	·	·	·	·	·	·	·	·	1	
leftmost[i]		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	
Left[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10	
Right[i]		10	9	9	9	8	7	6	6	6	6	6	6	5	4	3	3	3	3	3	2	1	0	0

The propagator

- leftmost: computes an assignment *w* maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- $Left[i] = \sum_{j=1}^{j=i} leftmost[j].$
- *Right*[*i*] : same as *Left* but in the reverse sense, i.e. [*x_n*, ..., *x*₁].

$\mathcal{D}(x_i)$			0	·		·	·			0	1	0			·	·	·	·	·	·	·	·	1	
leftmost[i]		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	
Left[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10	
Right[i]		10	9	9	9	8	7	6	6	6	6	6	6	5	4	3	3	3	3	3	2	1	0	0

The propagator

- leftmost: computes an assignment *w* maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- $Left[i] = \sum_{j=1}^{j=i} leftmost[j].$
- *Right*[*i*] : same as *Left* but in the reverse sense, i.e. [*x_n*,..,*x*₁].

$\mathcal{D}(x_i)$			0				·			0	1	0	1		·	·	·	·	•	·	·		1	
leftmost[i]		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	
Left[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10	
Right[i]		10	9	9	9	8	7	6	6	6	6	6	6	5	4	3	3	3	3	3	2	1	0	0

The propagator

- leftmost: computes an assignment *w* maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- $Left[i] = \sum_{j=1}^{j=i} leftmost[j].$
- *Right*[*i*] : same as *Left* but in the reverse sense, i.e. [*x_n*, ..., *x*₁].

$\mathcal{D}(x_i)$		·	0	·			·	·		0	1	0				·	·	·	·		·	·	1	
leftmost[i]		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	
Left[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10	
Right[i]		10	9	9	9	8	7	6	6	6	6	6	6	5	4	3	3	3	3	3	2	1	0	0
$\operatorname{GAC}(\mathcal{D}(x_i))$		1	0					0	0	0	1	0	1	1	1	0	0	0			1	1	1	

Context & Background The ArMostSEqCARD constraint AtMostSEqCarD in a Hybrid CP/SAT context Conclusion

Arc consistency

- AC on each ATMOST: $(\sum_{l=1}^{q} x_{i+l} \leq u)$
- AC on $\sum_{i=1}^{n} x_i = d$
- If Left[n] < d Then fail
- If Left[n] = d and $Left[i] + Right[n i + 1] \le d$ Then $\mathcal{D}(x_i) \leftarrow \{0\}$
- If Left[n] = d and Left[i 1] + Right[n i] < d Then $\mathcal{D}(x_i) \leftarrow \{1\}$

LAAS-CNRS

What about multiple $\operatorname{ATMOSTSEQCARD}$ within the same sequence ?

Definition

 $\texttt{MULTIATMOSTSEQCARD}\big(u_1,..,u_m,q_1,..,q_m,d,[x_1,\ldots,x_n]\big) \Leftrightarrow$

$$\bigwedge_{k=1}^{m}\bigwedge_{i=0}^{n-q_k}(\sum_{l=1}^{q_k}x_{i+l}\leq u_k)\wedge(\sum_{i=1}^n x_i=d)$$

Arc consistency

• MULTIATMOSTSEQCARD can be modeled as a conjunction of ATMOSTSEQCARD

Arc consistency

LAAS-CNRS

- MULTIATMOSTSEQCARD can be modeled as a conjunction of ATMOSTSEQCARD
- BUT This conjunction hinders propagation!

Context & Background The ArMostSEqCARD constraint AtMostSEqCarD in a Hybrid CP/SAT context Conclusion

Arc consistency

LAAS-CNRS

- MULTIATMOSTSEQCARD can be modeled as a conjunction of ATMOSTSEQCARD
- BUT This conjunction hinders propagation!
- Fortunately We were able to find a way to extend the filtering algorithm to handle several ATMOST constraints together.
- The complexity of achieving Arc Consistency is O(m.n)!

Car-Sequencing results

Table : Evaluation of the filtering methods (averaged over the 42 heuristics X 5 runs)

propagation	se	t1 (70 ×	5)		set2 (4 \times	5)		set3 (5 ×	: 5)		set4 (7 $ imes$	5)
#sol		avg bts	time	#sol	avg bts	time	#sol	avg bts	time	#sol	avg bts	time
sum	11270	174017	10.49	124	1101723	58.75	0	-	> 1200	99	378475	30.83
gsc	14008	1408	3.16	425	131062	109.45	31	55365	276.06	195	23897	53.61
amsc	13497	33600	3.79	470	665205	70.56	16	40326	8.62	214	215349	38.45
gsc+amsc	14033	1007	3.03	439	104823	99.71	32	57725	285.43	202	22974	61.61

Car-Sequencing results

Table : Optimization results

Instances		amso			gsc		E E	gsc+an	nsc		sum	
Instances	Empty	' slots	time (s)	Empty	slots	time (s)	Empty	/ slots	time (s)	Empty	slots	time (s)
	min	avg	avg	min	avg	avg	min	avg	avg	min	avg	avg
pb_200()	7.75	8.32	13.06	7.87	8.35	44.03	7.62	8.27	53.09	7.75	8.32	21.52
pb_300()	11.62	12.37	53.04	11.87	12.77	99.19	11.50	12.47	129.04	11.87	12.57	42.49
pb_400()	10.57	11.45	10.28	11.14	11.74	185.44	11.00	11.71	175.28	10.57	11.34	6.58

Crew-Rostering results

Table : Evaluation of the filtering methods

Heuristic	Most constrained employee						Most constrained shift					
Model	satifisable (1140)			unsatisfiable (385)			satifisable (1140)			unsatisfiable (385)		
	#sol	time	avg bts	#sol	time	avg bts	#sol	time	avg bts	#sol	time	avg bts
sum	772	21.93	205087	165	0.06	0	987	20.76	169964	352	19.74	180161
gsc	746	65.75	14133	175	0.98	0	1006	33.30	8875	335	15.97	5145
amsc	818	20.51	147479	215	0.13	330	1061	10.07	90247	362	12.19	108797
mamsc	842	20.78	125886	270	0.05	0	1074	10.94	91222	377	14.63	110244

SAT Solving

SAT

- A SAT Problem can be seen as a particular case of CSP
- Boolean variables
- 1 type of constraints : clauses (for instance $a \lor \neg b \lor \neg f \lor k$)

LAAS-CNRS

SAT Solving

SAT

- A SAT Problem can be seen as a particular case of CSP
- Boolean variables
- 1 type of constraints : clauses (for instance $a \lor \neg b \lor \neg f \lor k$)

The SAT revolution

- SAT is becoming a community!
- SAT Solvers are ever evolving
- SAT is being used applied to a wide range of combinatorial (optimization) problems (For instance : state-of-the-art results in RCPSP [Andreas Schutt et.al 2013])

Lazy Clause Generation

SAT & CP :

- Can we get the best from both approaches?
- to encode into SAT or to use global constraints?
 - \rightarrow A key concept in hybrid solvers : Explanations

An explanation is a set atomic constraints triggering a failure/filtering.

example

Cardinality Constraint : $\sum_{i=1}^{n} x_i \le k$; $D(x_i) = \{0, 1\}$. $x_i \leftarrow 1$ is pruned if we already have k appearances of the value 1.

$$\{x_j \leftarrow 1 | D(x_j) = \{1\}\} \rightarrow x_i \not\leftarrow 1$$
.

Lazy Clause Generation

SAT & CP :

- Can we get the best from both approaches?
- to encode into SAT or to use global constraints?
 - \rightarrow A key concept in hybrid solvers : Explanations

An explanation is a set atomic constraints triggering a failure/filtering.

example

Cardinality Constraint : $\sum_{i=1}^{n} x_i \le k$; $D(x_i) = \{0, 1\}$. $x_i \leftarrow 1$ is pruned if we already have k appearances of the value 1.

$$\{x_j \leftarrow 1 | D(x_j) = \{1\}\} \quad \rightarrow x_i \not\leftarrow 1 \; .$$

LAAS-CNRS

Explaining ATMOSTSEQCARD : the key idea

Explaining Failure

- **1** If a failure is triggered by a cardinality constraint (i.e. $(\sum_{l=1}^{q} x_{i+l} \le u)$ or $\sum_{i=1}^{n} x_i = d$), then it is easy to generate an explanation.
- If a failure triggered by Left[n] < d, a naive explanation would be the set of all assignments in the sequence.

Some observations

Let max(i) be the maximum cardinality of the q subsequences involving x_i when computing leftmost[i].

Some observations

Let max(i) be the maximum cardinality of the q subsequences involving x_i when computing leftmost[i].

Let $S : 1 \ 1 \ 0 \ 0$. subject to ATMOST(2/5).

 \rightarrow leftmost on S gives 1 1 0 0 0

Consider the sequence $S_0 : 1 \ 1 \ . 0$. \rightarrow leftmost on S_0 gives $1 \ 1 \ 0 \ 0$

Some observations

Let max(i) be the maximum cardinality of the q subsequences involving x_i when computing leftmost[i].

Let $S : 1 \ 1 \ 0 \ 0$. subject to $\operatorname{ATMOST}(2/5)$. \rightarrow leftmost on S gives $1 \ 1 \ 0 \ 0 \ 0$

Consider the sequence $S_0 : 1 \ 1 \ . 0$. \rightarrow leftmost on S_0 gives $1 \ 1 \ 0 \ 0$

 $\{x_i \leftarrow 0 \mid max(i) = u\}$

Some observations

Let max(i) be the maximum cardinality of the q subsequences involving x_i when computing leftmost[i].

Let $S : 1 \ 1 \ 0 \ 0$. subject to $\operatorname{ATMOST}(2/5)$. \rightarrow leftmost on S gives $1 \ 1 \ 0 \ 0 \ 0$

Consider the sequence $S_0 : 1 \ 1 \ . 0$. \rightarrow leftmost on S_0 gives $1 \ 1 \ 0 \ 0$

 $\{x_i \leftarrow 0 \mid max(i) = u\}$

Consider the sequence S_2 : .100. \rightarrow leftmost on S_2 gives 11000

Some observations

Let max(i) be the maximum cardinality of the q subsequences involving x_i when computing leftmost[i].

Let $S : 1 \ 1 \ 0 \ 0$. subject to $\operatorname{ATMOST}(2/5)$. \rightarrow leftmost on S gives $1 \ 1 \ 0 \ 0 \ 0$

Consider the sequence $S_0 : 1 \ 1 \ . 0$. \rightarrow leftmost on S_0 gives $1 \ 1 \ 0 \ 0$

 $\{x_i \leftarrow 0 \mid max(i) = u\}$

Consider the sequence S_2 : .100. \rightarrow leftmost on S_2 gives 11000

 $\{x_i \leftarrow 1 \mid max(i) \neq u\}$

Theorem

Theorem

Let S be the set of all assignments, $S^* = S \setminus (\{x_i \leftarrow 0 \mid max(i) = u\} \cup \{x_i \leftarrow 1 \mid max(i) \neq u\})$, then S^* is a valid explanation.

 \rightarrow runs in O(n) since we call leftmost once.

LAAS-CNRS

Context & Background The ATMOSTSEqCARD constraint ATMOSTSEqCARD in a Hybrid CP/SAT context Conclusion

Example : ATMOSTSEQCARD(2, 5, 8, $[x_1, .., x_{22}]$)

The final explanation size $|S^*|$ is 9 while the naive one (|S|) is 20.

LAAS-CNRS

Explaining pruning

explanation for $x \leftarrow k$?

- Add x ← k to the instantiation where the pruning was performed.
- **2** Use the previous procedure to explain the failure on the new instantiation.

LAAS-CNRS

Experimental results

Table : Evaluation of the models

Method	sat[easy] (74 \times 5)							(28 × 5)	
Wiethod	#suc	avg fails	time	#suc	avg fails	time	#suc	avg fails	time
Hybrid (VSIDS)	370	903	0.23	16	207211	286.32	35	177806	224.78
Hybrid (VSIDS \rightarrow Slot)	370	739	0.23	35	76256	64.52	37	204858	248.24
Hybrid (Slot \rightarrow VSIDS)	370	132	0.04	34	4568	2.50	37	234800	287.61
Hybrid (Slot)	370	132	0.04	35	6304	3.75	23	174097	299.24
СР	370	43.06	0.03	35	57966	16.25	0	-	-

Contributions & Future Research

Contributions

- ATMOSTSEQCARD : best existing complexity: $O(n^2)$ [Maher et al, 2008].
- An Arc Consistency algorithm with an optimal worst case time complexity O(n).
 - Car-sequencing
 - Crew-Rostering
- Useful Extensions of the ATMOSTSEQCARD constraint
- A linear time explanation for the ATMOSTSEQCARD constraint
- NICTA collaboration : An Empirical study between CP, Hybrid CP/SAT and pure SAT Models for the Car-Sequencing problem
 - Closing 13 out of the 23 large open instances.

Perspectives

- How hard is finding optimal explanations for ATMOSTSEQCARD ? (it is NP-Hard in general)
- How to explain MULTIATMOSTSEQCARD ?
- MULTIATMOSTSEQCARD + explanation for other Timetabling problems?

Thank you!

Related publications

Journals

1 Mohamed Siala, Emmanuel Hebrard and Marie-Jose Huguet, An Optimal Arc Consistency Algorithm for a Particular Case of Sequence Constraint, Constraints January 2014, Volume 19, Issue 1, pp 30-56

International Conferences

2- [Honorable mention] Mohamed Siala, Emmanuel Hebrard, and Marie-Josè Huguet, An Optimal Arc Consistency Algorithm for a Chain of Atmost Constraints with Cardinality, CP 12, Quebec, Canada

3-Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger*, Mohamed Siala*, and Toby Walsh, SAT and Hybrid Models of the Car-Sequencing problem, CP-AI-OR 14, Cork, Ireland.

Workshops

4-Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet, A Study of Branching Heuristics for the Car-Sequencing Problem , SSNOW'12, CPAIOR'12, Nantes, France

5-Mohamed Siala, Christian Artigues, Emmanuel Hebrard, *Explaining the AtMostSeqCard constraint*, CP'13 Doctoral Program, September 2013, Uppsala, Sweden.