
Three Generalizations of the FOCUS Constraint

Nina Narodytska
NICTA and UNSW
Sydney, Australia

ninan@cse.unsw.edu.au

Thierry Petit
LINA-CNRS

Mines-Nantes, INRIA
Nantes, France

thierry.petit@mines-nantes.fr

Mohamed Siala
LAAS-CNRS

Univ de Toulouse, INSA
Toulouse, France
msiala@laas.fr

Toby Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

Abstract
The FOCUS constraint expresses the notion that so-
lutions are concentrated. In practice, this constraint
suffers from the rigidity of its semantics. To tackle
this issue, we propose three generalizations of the
FOCUS constraint. We provide for each one a com-
plete filtering algorithm as well as discussing de-
compositions.

1 Introduction
Many discrete optimization problems have constraints on the
objective function. Being able to represent such constraints
is fundamental to deal with many real world industrial prob-
lems. Constraint programming is a promising approach to
express and filter such constraints. In particular, several con-
straints have been proposed for obtaining well-balanced so-
lutions [?; ?; ?]. Recently, the FOCUS constraint [?] was
introduced to express the opposite notion. It captures the
concept of concentrating the high values in a sequence of
variables to a small number of intervals. We recall its def-
inition. Throughout this paper, X = [x0, x1, . . . , xn−1] is
a sequence of variables and si,j is a sequence of indices of
consecutive variables in X , such that si,j = [i, i + 1, . . . , j],
0 ≤ i ≤ j < n. We let |E| be the size of a collection E.

Definition 1 ([?]). Let yc be a variable. Let k and len be two
integers, 1 ≤ len ≤ |X|. An instantiation of X ∪ {yc} satis-
fies FOCUS(X, yc , len, k) iff there exists a set SX of disjoint
sequences of indices si,j such that three conditions are all
satisfied: (1) |SX | ≤ yc (2) ∀xl ∈ X , xl > k ⇔ ∃si,j ∈ SX

such that l ∈ si,j (3) ∀si,j ∈ SX , j − i+ 1 ≤ len

FOCUS can be used in various contexts including cumu-
lative scheduling problems where some excesses of capac-
ity can be tolerated to obtain a solution [?]. In a cumulative
scheduling problem, we are scheduling activities, and each
activity consumes a certain amount of some resource. The
total quantity of the resource available is limited by a capac-
ity. Excesses can be represented by variables [?]. In practice,
excesses might be tolerated by, for example, renting a new
machine to produce more resource. Suppose the rental price
decreases proportionally to its duration: it is cheaper to rent a
machine during a single interval than to make several rentals.
On the other hand, rental intervals have generally a maximum

possible duration. FOCUS can be set to concentrate (non null)
excesses in a small number of intervals, each of length at most
len .

Unfortunately, the usefulness of FOCUS is hindered by the
rigidity of its semantics. For example, we might be able to
rent a machine from Monday to Sunday but not use it on Fri-
day. It is a pity to miss such a solution with a smaller number
of rental intervals because FOCUS imposes that all the vari-
ables within each rental interval take a high value. Moreover,
a solution with one rental interval of two days is better than
a solution with a rental interval of four days. Unfortunately,
FOCUS only considers the number of disjoint sequences, and
does not consider their length.

We tackle those issues here by means of three generaliza-
tions of FOCUS. SPRINGYFOCUS tolerates within each se-
quence in si,j ∈ SX some values v ≤ k . To keep the se-
mantics of grouping high values, their number is limited in
each si,j by an integer argument. WEIGHTEDFOCUS adds a
variable to count the length of sequences, equal to the num-
ber of variables taking a value v > k . The most generic
one, WEIGHTEDSPRINGYFOCUS, combines the semantics
of SPRINGYFOCUS and WEIGHTEDFOCUS. Propagation of
constraints like these complementary to an objective function
is well-known to be important [?; ?]. We present and exper-
iment with filtering algorithms and decompositions therefore
for each constraint.

2 Springy FOCUS
In Definition 1, each sequence in SX contains exclusively val-
ues v > k. In many practical cases, this property is too strong.
Consider one simple instance of the problem in the introduc-

Figure 1: (A) Problem with 4 fixed activities and one activity of
length 5 that can start from time 1 to 5. (B) Solution satisfying
FOCUS(X, [1, 1], 5, 0), with a new machine rented for 5 days. (C)
Practical solution violating FOCUS(X, [1, 1], 5, 0), with a new ma-
chine rented for 3 days but not used on the second day.
tion, in Figure 1, where one variable xi ∈ X is defined per

point in time i (e.g., one day), to represent excesses of capac-
ity. Inintialy, 4 activities are fixed and one activity a remains
to be scheduled (drawing A), of duration 5 and that can start
from day 1 to day 5. If FOCUS(X, yc = 1, 5, 0) is imposed
then a must start at day 1 (solution B). We have one 5 day
rental interval. Assume now that the new machine may not
be used every day. Solution (C) gives one rental of 3 days
instead of 5. Furthermore, if len = 4 the problem will have
no solution using FOCUS, while this latter solution still ex-
ists in practice. This is paradoxical, as relaxing the condition
that sequences in the set SX of Definition 1 take only values
v > k deteriorates the concentration power of the constraint.
Therefore, we propose a soft relaxation of FOCUS, where at
most h values less than k are tolerated within each sequence
in SX .

Definition 2. Let yc be a variable and k , len , h be three
integers, 1 ≤ len ≤ |X|, 0≤ h < len−1. An instantiation of
X ∪{yc} satisfies SPRINGYFOCUS(X, yc , len, h, k) iff there
exists a set SX of disjoint sequences of indices si,j such that
four conditions are all satisfied: (1) |SX | ≤ yc (2) ∀xl ∈ X ,
xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j (3) ∀si,j ∈ SX ,
j − i + 1 ≤ len , xi > k and xj > k. (4) ∀si,j ∈ SX ,
|{l ∈ si,j , xl ≤ k}| ≤ h

Bounds consistency (BC) on SPRINGYFOCUS is equiva-
lent to domain consistency: any solution can be turned into a
solution that only uses the lower bound min(xl) or the upper
bound max(xl) of the domain D(xl) of each xl ∈ X (this ob-
servation was made for FOCUS [?]). Thus, we propose a BC
algorithm. The first step is to traverse X from x0 to xn−1, to
compute the minimum possible number of disjoint sequences
in SX (a lower bound for yc), the focus cardinality, denoted
fc(X). We use the same notation for subsequences of X .
fc(X) depends on k , len and h .

Definition 3. Given xl ∈ X , we consider three quantities.
(1) p(xl, v≤) is the focus cardinality of [x0, x1, . . . , xl], as-
suming xl ≤ k , and ∀si,j ∈ S[x0,x1,...,xl], j 6= l. (2)
pS(xl, v≤) is the focus cardinality of [x0, x1, . . . , xl], assum-
ing xl ≤ k and ∃i, si,l ∈ S[x0,x1,...,xl]. (3) p(xl, v>) is the
focus cardinality of [x0, x1, . . . , xl] assuming xl > k .

Any quantity is equal to n + 1 if the domain D(xl) of xl

makes not possible the considered assumption.

Property 1. pS(x0, v≤) = pS(xn−1, v≤) = n + 1, and
fc(X) = min(p(xn−1, v≤), p(xn−1, v>)).

Proof. By construction from Definitions 2 and 3.

To compute the quantities of Definition 3 for xl∈X we use
plen(xl), the minimum length of a sequence in S[x0,x1,...,xl]

containing xl among instantiations of [x0, x1, . . . , xl] where
the number of sequences is fc([x0, x1, . . . , xl]). plen(xl)=0
if ∀si,j ∈ S[x0,x1,...,xl], j 6= l. card(xl) is the minimum num-
ber of values v ≤ k in the current sequence in S[x0,x1,...,xl],
equal to 0 if ∀si,j ∈ S[x0,x1,...,xl], j 6= l. card(xl) assumes
that xl > k. It has to be decreased it by one if xl ≤ k. For
sake of space, the proofs of the next four lemmas are given in
a technical report [?].

Algorithm 1: MINCARDS(X, len, k , h): Integer matrix

1 pre := new Integer[|X|][4][] ;
2 for l ∈ 0..n− 1 do
3 pre[l][0] := new Integer[2];
4 for j ∈ 1..3 do pre[l][j] := new Integer[1];
5 ;
6 Initialization Lemma 1,;
7 for l ∈ 1..n− 1 do Lemmas 2, 3, 4 and Propositions 1 and 2.;
8 ;
9 return pre;

Lemma 1 (initialization). p(x0, v≤) = 0 if min(x0) ≤ k,
and n + 1 otherwise; pS(x0, v≤) = n + 1; p(x0, v>) =
1 if max(x0) > k and n + 1 otherwise; plen(x0) = 1 if
max(x0) > k and 0 otherwise; card(x0) = 0.

Lemma 2 (p(xl, v≤)). If min(xl) ≤ k then p(xl, v≤) =
min(p(xl−1, v≤), p(xl−1, v>)), else p(xl, v≤) = n+ 1.

Lemma 3 (pS(xl, v≤)). If min(xi)>k, pS(xi, v≤)=n+ 1.
Otherwise, if plen(xi−1) ∈ {0, len − 1, len} ∨ card(xi−1)
= h then pS(xi, v≤) = n + 1, else pS(xi, v≤) =
min(pS(xi−1, v≤), p(xi−1, v>)).

Lemma 4 (p(xl, v>)). If max(xl) ≤ k then p(xl, v>)=n+1.
Otherwise, If plen(xl−1) ∈ {0, len}, p(xl, v>) =
min(p(xl−1, v>) + 1, p(xl−1, v≤) + 1), else p(xl, v>)
= min(p(xl−1, v>), pS(xl−1, v≤), p(xl−1, v≤) + 1).

Proposition 1 (plen(xl)). (by construction) If min
(pS(xl−1, v≤),p(xl−1, v>))<p(xl−1,v≤)+1∧plen(xl−1)<
len then plen(xl) = plen(xl−1) + 1. Otherwise, if
p(xl, v>)) < n+ 1 then plen(xl) = 1, else plen(xl) = 0.

Proposition 2 (card(xl)). (by construction) If plen(xl) = 1
then card(xl) = 0. Otherwise, if p(xl, v>) = n + 1 then
card(xl) = card(xl−1) + 1, else card(xl) = card(xl−1).

Algorithm 1 implements the lemmas with pre[l][0][0] =
p(xl, v≤), pre[l][0][1] = pS(xl, v≤), pre[l][1] = p(xl, v>),
pre[l][2] = plen(xl), pre[l][3] = card(xl).

The principle of Algorithm 2 is the following. First, lb =
fc(X) is computed with xn−1. We execute Algorithm 1 from
x0 to xn−1 and conversely (arrays pre and suf). We thus
have for each quantity two values for each variable xl. To ag-
gregate them, we implement regret mechanisms directly de-
rived from Propositions 2 and 1, according to the parameters
len and h . Line 4 is optional but it avoids some work
when the variable yc is fixed, thanks to the same property as
FOCUS (see [?]). Algorithm 2 performs a constant number of
traversals of the set X . Its time complexity is O(n), which is
optimal.

3 Weighted FOCUS
We present WEIGHTEDFOCUS, that extends FOCUS with a
variable zc limiting the the sum of lengths of all the sequences
in SX , i.e., the number of variables covered by a sequence in
SX . It distinguishes between solutions that are equivalent
with respect to the number of sequences in SX but not with
respect to their length, as Figure 2 shows.

Algorithm 2: FILTERING(X, yc , len, k , h): Set of variables

1 pre := MINCARDS(X, len, k, h) ;
2 Integer lb := min(pre[n− 1][0][0], pre[n− 1][1]);
3 if min(yc) < lb then D(yc) := D(yc) \ [min(yc), lb[;
4 ;
5 if min(yc) = max(yc) then
6 suf := MINCARDS([xn−1, xn−2, . . . , x0], len, k, h) ;
7 for l ∈ 0..n− 1 do
8 if pre[l][0][0] + suf [n− 1− l][0][0] > max(yc) then
9 Integer regret := 0; Integer add := 0;

10 if pre[l][1] ≤ pre[l][0][1] then add := add+ 1;
11 ;
12 if suf [n− 1− l][1] ≤ suf [n− 1− l][0][1] then

add:=add+1;
13 ;
14 if pre[l][2] + suf [n− 1− l][2]− 1 ≤ len ∧

pre[l][3] + suf [n− 1− l][3] + add− 1 ≤ h then regret
:= 1;

15 ;
16 if

pre[l][0][1] + suf [n− 1− l][0][1]− regret > max(yc)
then D(xi) := D(xi)\ [min(xi), k];

17 ;
18 Integer regret := 0;
19 if pre[l][2] + suf [n− 1− l][2]− 1 ≤ len ∧

pre[l][3] + suf [n− 1− l][3]− 1≤ h then regret := 1;
20 ;
21 if pre[l][1] + suf [n− 1− l][1]− regret > max(yc) then
22 D(xi) := D(xi)\]k,max(xi)];
23 return X ∪ {yc};

Definition 4. Let yc and zc be two integer variables
and k , len be two integers, such that 1 ≤ len ≤
|X|. An instantiation of X ∪ {yc} ∪ {zc} satisfies
WEIGHTEDFOCUS(X, yc , len, k , zc) iff there exists a set SX

of disjoint sequences of indices si,j such that four conditions
are all satisfied: (1) |SX | ≤ yc (2) ∀xl ∈ X , xl > k ⇔
∃si,j ∈ SX such that l ∈ si,j (3) ∀si,j ∈ SX , j− i+1 ≤ len
(4)

∑
si,j∈SX

|si,j | ≤ zc .

Definition 5 ([?]). Given an integer k , a variable xl ∈ X
is: Penalizing, (Pk), iff min(xl) > k. Neutral, (Nk), iff
max(xl) ≤ k. Undetermined, (Uk), otherwise. We say xl ∈
Pk iff xl is labeled Pk, and similarly for Uk and Nk.

Figure 2: (A) Problem with 4 fixed activities and one activity of
length 5 that can start from time 3 to 5. We assume D(yc) = {2},
len = 3 and k = 0. (B) Solution satisfying WEIGHTEDFOCUS with
zc = 4. (C) Solution satisfying WEIGHTEDFOCUS with zc = 2.

Dynamic Programming (DP) Principle Given a partial in-
stantiation IX of X and a set of sequences SX that cov-
ers all penalizing variables in IX , we consider two terms:
the number of variables in Pk and the number of undeter-
mined variables, in Uk, covered by SX . We want to find a
set SX that minimizes the second term. Given a sequence
of variables si,j , the cost cst(si,j) is defined as cst(si,j) =
{p|xp ∈ Uk, xp ∈ si,j}. We denote cost of SX , cst(SX),

the sum cst(SX) =
∑

si,j∈SX
cst(si,j). Given IX we con-

sider |Pk| = |{xi ∈ Pk}|. We have:
∑

si,j∈S |si,j | =∑
si,j∈S cst(si,j) + |Pk|.
We start with explaining the main difficulty in building a

propagator for WEIGHTEDFOCUS. The constraint has two
optimization variables in its scope and we might not have a
solution that optimizes both variables simultaneously.
Example 1. Consider the set X = [x0, x1, . . . , x5]
with domains [1, {0, 1}, 1, 1, {0, 1}, 1] and
WEIGHTEDFOCUS(X, [2, 3], 3, 0, [0, 6]), solution
SX = {s0,2, s3,5}, zc = 6, minimizes yc = 2, while
solution SX = {s0,1, s2,3, s5,5}, yc = 3, minimizes zc = 4.

Example 1 suggests that we need to fix one of the two op-
timization variables and only optimize the other one. Our
algorithm is based on a dynamic program [?]. For each prefix
of variables [x0, x1, . . . , xj] and given a cost value c, it com-
putes a cover of focus cardinality, denoted Sc,j , which covers
all penalized variables in [x0, x1, . . . , xj] and has cost exactly
c. If Sc,j does not exist we assume that Sc,j =∞. Sc,j is not
unique as Example 2 demonstrates.
Example 2. Consider X = [x0, x1, . . . , x7] and
WEIGHTEDFOCUS(X, [2, 2], 5, 0, [7, 7]), with D(xi) = {1},
i ∈ I, I = {0, 2, 3, 5, 7} and D(xi) = {0, 1},
i ∈ {0, 1, . . . 7} \ I . Consider the subsequence of
variables [x0, . . . , x5] and S1,5. There are several sets of
minimum cardinality that cover all penalized variables in the
prefix [x0, . . . , x5] and has cost 2, e.g. S1

1,5 = {s0,2, s3,5}
or S2

1,5 = {s0,4, s5,5}. Assume we sort sequences by their
starting points in each set. We note that the second set is
better if we want to extend the last sequence in this set as the
length of the last sequence s5,5 is shorter compared to the
length of the last sequence in S1

1,5, which is s3,5.
Example 2 suggests that we need to put additional condi-

tions on Sc,j to take into account that some sets are better than
others. We can safely assume that none of the sequences in
Sc,j starts at undetermined variables as we can always set it
to zero. Hence, we introduce a notion of an ordering between
sets Sc,j and define conditions that this set has to satisfy.

Ordering of sequences in Sc,j . We introduce an order
over sequences in Sc,j . Given a set of sequences in Sc,j we
sort them by their starting points. We denote last(Sc,j) the
last sequence in Sc,j in this order. If xj ∈ last(Sc,j) then
|last(Sc,j)| is, naturally, the length of last(Sc,j), otherwise
|last(Sc,j)| =∞.

Ordering of sets Sc,j , c ∈ [0,max(zc)], j ∈ {0, 1, . . . , n−
1}. We define a comparison operation between two sets Sc,j

and Sc′,j′ . Sc,j ≤ Sc′,j′ iff |Sc,j | < |Sc′,j′ | or |Sc,j | =
|Sc′,j′ | and last(Sc,j) ≤ last(Sc′,j′). Note that we do not
take account of cost in the comparison as the current defini-
tion is sufficient for us. Using this operation, we can compare
all sets Sc,j and S′c,j of the same cost for a prefix [x0, . . . , xj].
We say that Sc,j is optimal iff satisfies the following 4 condi-
tions.
Proposition 3 (Conditions on Sc,j).

1. Sc,j covers all Pk variables in [x0, x1, . . . , xj],
2. cst(Sc,j) = c,

fc-1,j-1

xj-1

fc,j-1

xj in Pk

fc,j

xj-1 xj in Uk

fc,j
es

fc-1,j-1

fc,j-1

xj-1 xj in Nk

fc,jfc,j-1

fc-1,j-1
es - extend or start new
e - extend
i - interrupt

(a) (b) (c)

i

es
i

e

Figure 3: Representation of one step of Algorithm 3.

3. ∀sh,g ∈ Sc,j , xh /∈ Uk,

4. Sc,j is the first set in the order among all sets that satisfy
conditions 1–3.

As can be seen from definitions above, given a subse-
quence of variables x0, . . . , xj , Sc,j is not unique and might
not exist. However, if |Sc,j | = |Sc′,j′ |, c = c′ and j = j′,
then last(Sc,j) = last(Sc′,j′).

Example 3. Consider WEIGHTEDFOCUS from Example 2.
Consider the subsequence [x0, x1]. S0,1 = {s0,0}, S1,1 =
{s0,1}. Note that S2,1 does not exist. Consider the sub-
sequence [x0, . . . , x5]. We have S0,5 = {s0,0, s2,3, s5,5},
S1,5 = {s0,4, s5,5} and S2,5 = {s0,3, s5,5}. By definition,
last(S0,5) = s5,5, last(S1,5) = s5,5 and last(S2,5) = s5,5.
Consider the set S1,5. Note that there exists another set
S′1,5 = {s0,0, s2,5} that satisfies conditions 1–3. Hence, it
has the same cardinality as S1,5 and the same cost. However,
S1,5 < S′1,5 as |last(S1,5)| = 1 < |last(S′1,5)| = 3.

Bounds disentailment Each cell in the dynamic program-
ming table fc,j , c ∈ [0, zUc], j ∈ {0, 1, . . . , n − 1}, where
zUc = max(zc) − |Pk|, is a pair of values qc,j and lc,j ,
fc,j = {qc,j , lc,j}, stores information about Sc,j . Namely,
qc,j = |Sc,j |, lc,j = |last(Sc,j)| if last(Sc,j) 6= ∞ and ∞
otherwise. We say that fc,j/qc,j/lc,j is a dummy (takes a
dummy value) iff fc,j = {∞,∞}/qc,j = ∞/lc,j = ∞. If
y1 =∞ and y2 =∞ then we assume that they are equal. We
introduce a dummy variable x−1, D(x−1) = {0} and a row
f−1,j , j = −1, . . . , n− 1 to keep uniform notations.

Algorithm 3: Weighted FOCUS(x0, . . . , xn−1)
1 for c ∈ −1..zU

c do
2 for j ∈ −1..n− 1 do
3 fc,j ← {∞,∞};
4 f0,−1 ← {0, 0} ;
5 for j ∈ 0..n− 1 do
6 for c ∈ 0..j do
7 if xj ∈ Pk then /* penalizing */
8 if (lc,j−1 ∈ [1, len)) ∨ (qc,j−1 =∞) then
9 fc,j ← {qc,j−1, lc,j−1 + 1};

10 else fc,j ← {qc,j−1 + 1, 1};
11 ;
12 if xj ∈ Uk then /* undetermined */
13 if (lc−1,j−1 ∈ [1, len) ∧ qc−1,j−1 =

qc,j−1) ∨ (qc,j−1 =∞) then
fc,j ← {qc−1,j−1, lc−1,j−1 + 1} ;

14 else fc,j ← {qc,j−1,∞} ;
15 if xj ∈ Nk then /* neutral */
16 fc,j ← {qc,j−1,∞}
17 return f ;

Algorithm 3 gives pseudocode for the propagator. The in-
tuition behind the algorithm is as follows. Again, by cost we
mean the number of covered variables in Uk.

D(x0)D(x1)D(x2) D(x3) D(x4) D(x5) D(x6) D(x7)
c [1, 1] [0, 1] [1, 1] [1, 1] [0, 1] [1, 1] [0, 1] [1, 1]

0 {1, 1}{1,∞}{2, 1} {2, 2} {2,∞} {3, 1} {3,∞} {4, 1}
1 {1, 2} {1, 3} {1, 4} {1,∞} {2, 1} {2,∞} {3, 1}

zU
c = 2 {1, 5} {2, 1} {2, 2} {2, 3}

Table 1: An execution of Algorithm 3 on WEIGHTEDFOCUS
from Example 2. Dummy values fc,j are removed.

If xj ∈ Pk then we do not increase the cost of Sc,j com-
pared to Sc,j−1 as the cost only depends on xj ∈ Uk. Hence,
the best move for us is to extend last(Sc,j−1) or start a new
sequence if it is possible. This is encoded in lines 9 and 10 of
the algorithm. Figure 3(a) gives a schematic representation of
these arguments.

If xj ∈ Uk then we have two options. We can obtain
Sc,j from Sc−1,j−1 by increasing cst(Sc−1,j−1) by one. This
means that xi will be covered by last(Sc,j). Alternatively,
from Sc,j−1 by interrupting last(Sc,j−1). This is encoded in
line 13 of the algorithm (Figure 3(b)).

If xj ∈ Nk then we do not increase the cost of Sc,j com-
pared to Sc,j−1. Moreover, we must interrupt last(Sc,j−1),
line 16 (Figure 3(c), ignore the gray arc).

First we prove a property of the dynamic programming
table. We define a comparison operation between fc,j and
fc′,j′ induced by a comparison operation between Sc,j and
Sc′,j′ : fc,j ≤ fc′,j′ if (qc,j < qc′,j′) or (qc,j = qc′,j′ and
lc,j ≤ lc′,j′). In other words, as in a comparison operation
between sets, we compare by the cardinality of sequences,
|Sc,j | and |Sc′,j′ |, and, then by the length of the last sequence
in each set, last(Sc,j) and last(Sc′,j′). See [?] for the proofs
of the next two lemmas.
Lemma 5. Consider WEIGHTEDFOCUS(X, yc , len, k , zc).
Let f be dynamic programming table returned by Algo-
rithm 3. Non-dummy elements fc,j are monotonically non-
increasing in each column, so that fc′,j ≤ fc,j , 0 ≤ c < c′ ≤
zUc , j = [0, . . . , n− 1].
Lemma 6. Consider WEIGHTEDFOCUS(X, yc , len, k , zc).
The dynamic programming table fc,j = {qc,j , lc,j} c ∈
[0, zUc], j = 0, . . . , n − 1, is correct in the sense that if fc,j
exists and it is non-dummy then a corresponding set of se-
quences Sc,j exists and satisfies conditions 1–4. The time
complexity of Algorithm 3 is O(nmax(zc)).
Example 4. Table 1 shows an execution of Algorithm 3 on
WEIGHTEDFOCUS from Example 2. Note that |P0| = 5.
Hence, zUc = max(zc) − |P0| = 2. As can be seen from
the table, the constraint has a solution as there exists a set
S2,7 = {s0,3, s5,7} such that |S2,7| = 2.

Bounds consistency To enforce BC on variables x, we
compute an additional DP table b, bc,j , c ∈ [0, zUc], j ∈
[−1, n− 1] on the reverse sequence of variables x.
Lemma 7. Consider WEIGHTEDFOCUS(X, yc , len, k , zc).
Bounds consistency can be enforced in O(nmax(zc)) time.

Proof. (Sketch) We build dynamic programming tables f and
b. We will show that to check if xi = v has a support it
is sufficient to examine O(zUc) pairs of values fc1,i−1 and
bc2,n−i−2, c1, c2 ∈ [0, zUc] which are neighbor columns to the

ith column. It is easy to show that if we consider all possible
pairs of elements in fc1,i−1 and bc2,n−i−2 then we determine
if there exists a support for xi = v. There are O(zUc × zUc)
such pairs. The main part of the proof shows that it sufficient
to consider O(zUc) such pairs. In particular, to check a sup-
port for a variable-value pair xi = v, v > k, for each fc1,i−1
it is sufficient to consider only one element bc2,n−i−2 such
that bc2,n−i−2 is non-dummy and c2 is the maximum value
that satisfies inequality c1+ c2+1 ≤ zUc . To check a support
for a variable-value pair xi = v, v ≤ k, for each fc1,i−1 it
is sufficient to consider only one element bc2,n−i−2 such that
bc2,n−i−2 is non-dummy and c2 is the maximum value that
satisfies inequality c1 + c2 ≤ zUc .

We observe a useful property of the constraint. If there
exists fc,n−1 such that c < max(zc) and qc,n−1 < max(yc)
then the constraint is BC. This follows from the observation
that given a solution of the constraint SX , changing a variable
value can increase cst(SX) and |SX | by at most one.

Alternatively we can decompose WEIGHTEDFOCUS using
O(n) additional variables and constraints.

Proposition 4. Given FOCUS(X, yc , len, k), let zc be a vari-
able and B=[b0, b1, . . . , bn−1] be a set of variables such that
∀bl∈B,D(bl)={0, 1}. WEIGHTEDFOCUS(X, yc , len, k , zc)
⇔ FOCUS(X, yc , len, k) ∧ [∀l, 0 ≤ l < n, [(xl ≤ k)∧ (bl =
0)] ∨ [(xl > k) ∧ (bl = 1)]] ∧

∑
l∈{0,1,...,n−1} bl ≤ zc .

Enforcing BC on each constraint of the decomposition is
weaker than BC on WEIGHTEDFOCUS. Given xl ∈ X , a
value may have a unique support for FOCUS which violates∑

l∈{0,1,...,n−1} bl ≤ zc , and conversely. Consider n=5,
x0=x2=1, x3=0, and D(x1)=D(x4)={0, 1}, yc=2, zc=3,
k=0 and len=3. Value 1 for x4 corresponds to this case.

4 Weighted Springy FOCUS
We consider a further generalization of the FOCUS constraint
that combines SPRINGYFOCUS and WEIGHTEDFOCUS. We
prove that we can propagate this constraint in O(nmax(zc))
time, which is same as enforcing BC on WEIGHTEDFOCUS.

Definition 6. Let yc and zc be two variables and k , len ,
h be three integers, such that 1 ≤ len ≤ |X| and 0 <
h < len − 1. An instantiation of X ∪ {yc} ∪ zc satisfies
WEIGHTEDSPRINGYFOCUS(X, yc , len, h, k , zc) iff there ex-
ists a set SX of disjoint sequences of indices si,j such that
five conditions are all satisfied: (1) |SX | ≤ yc (2) ∀xl ∈ X ,
xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j (3) ∀si,j ∈ SX ,
|{l ∈ si,j , xl ≤ k}| ≤ h (4) ∀si,j ∈ SX , j − i + 1 ≤ len ,
xi > k and xj > k. (5)

∑
si,j∈SX

|si,j | ≤ zc .

We can again partition cost of S into two terms.∑
si,j∈S |si,j | =

∑
si,j∈S cst(si,j) + |Pk|. However,

cst(si,j) is the number of undetermined and neutral variables
covered si,j , cst(si,j) = {p|xp ∈ Uk ∪Nk, xp ∈ si,j} as we
allow to cover up to h neutral variables.

The propagator is again based on a dynamic program that
for each prefix of variables [x0, x1, . . . , xj] and given cost
c computes a cover Sc,j of minimum cardinality that covers
all penalized variables in the prefix [x0, x1, . . . , xj] and has

cost exactly c. We face the same problem of how to com-
pare two sets S1

c,j and S2
c,j of minimum cardinality. The is-

sue here is how to compare last(S1
c,j) and last(S2

c,j) if they
cover a different number of neutral variables. Luckily, we
can avoid this problem due to the following monotonicity
property. If last(S1

c,j) and last(S2
c,j) are not equal to in-

finity then they both end at the same position j. Hence, if
last(S1

c,j) ≤ last(S2
c,j) then the number of neutral variables

covered by last(S1
c,j) is no larger than the number of neutral

variables covered by last(S2
c,j). Therefore, we can define or-

der on sets Sc,j as we did in Section 3 for WEIGHTEDFOCUS.
Our bounds disentailment detection algorithm for

WEIGHTEDSPRINGYFOCUS mimics Algorithm 3. We omit
the pseudocode due to space limitations but highlight two
not-trivial differences between this algorithm and Algo-
rithm 3. The first difference is that each cell in the dynamic
programming table fc,j , c ∈ [0, zUc], j ∈ {0, 1, . . . , n − 1},
where zUc = max(zc) − |Pk|, is a triple of values qc,j ,
lc,j and hc,j , fc,j = {qc,j , lc,j , hc,j}. The new parameter
hc,j stores the number of neutral variables covered by
last(Sc,j). The second difference is in the way we deal with
neutral variables. If xj ∈ Nk then we have two options
now. We can obtain Sc,j from Sc−1,j−1 by increasing
cst(Sc−1,j−1) by one and increasing the number of covered
neutral variables by last(Sc,j−1) (Figure 3(c), the gray arc).
Alternatively, we can obtain Sc,j from Sc,j−1 by interrupting
last(Sc,j−1) (Figure 3(c), the black arc). BC can enforced
using two modifications of the corresponding algorithm for
WEIGHTEDFOCUS (a proof is given in [?]).
Lemma 8. Consider WEIGHTEDSPRINGYFOCUS(X, yc ,
len, h, k , zc). BC can be enforced in O(nmax(zc)) time.

WEIGHTEDSPRINGYFOCUS can be encoded using the
cost-REGULAR constraint. The automaton needse 3 coun-
ters to compute len, yc and h . Hence, the time complexity of
this encoding is O(n4). This automaton is non-deterministic
as on seeing v ≤ k , it either covers the variable or inter-
rupts the last sequence. Unfortunately the non-deterministic
cost-REGULAR is not implemented in any constraint solver
to our knowledge. In contrast, our algorithm takes just O(n2)
time. WEIGHTEDSPRINGYFOCUS can also be decomposed
using the GCC constraint [?]. We define the following vari-
ables for all i ∈ [0,max(yc) − 1] and j ∈ [0, n − 1]: Si the
start of the ith sub-sequence. D(Si) = {0, .., n+max(yc)};
Ei the end of the ith sub-sequence. D(Ei) = {0, .., n +
max(yc)}; Tj the index of the subsequence in SX contain-
ing xj . D(Tj) = {0, ..,max(yc)}; Zj the index of the sub-
sequence in SX containing xj s.t. the value of xj is less
than or equal to k. D(Zj) = {0, ..,max(yc)}; lastc the
cardinality of SX . D(lastc) = {0, ..,max(yc)}; Card, a
vector of max(yc) variables having {0, .., h} as domains.
WEIGHTEDSPRINGYFOCUS(X, yc , len, h, k , zc)⇔

(xj ≤ k) ∨ Zj = 0; (xj ≤ k) ∨ Tj > 0;

(xj > k) ∨ (Tj = Zj); (Tj ≤ lastc);

(Tj 6= i) ∨ (j ≥ Si−1); (Tj 6= i) ∨ (j ≤ Ei−1);

(i > lastc) ∨ (Tj = i)∨(j < Si−1) ∨ (j > Ei−1);

∀q ∈ [1,max(yc)− 1], q ≥ lastc ∨ Sq > Eq−1;

∀q ∈ [0,max(yc)− 1] q ≥ lastc ∨ Eq ≥ Sq;

∀q ∈ [0,max(yc)− 1] q ≥ lastc ∨ len > (Eq − Sq);

Table 2: SLS with WEIGHTEDFOCUS and its decomposition.
16 1 16 2 16 3

#n #b T #n #b T #n #b T
F 50 0.9K 0 50 4.1K 2 47 18.1K 7

D1 50 3.4K 1 49 8.1K 3 44 21.8K 8
20 1 20 2 20 3

#n #b T #n #b T #n #b T
F 49 11.8K 7 45 24.9K 14 39 36.5K 23

D1 43 30.8K 13 35 27.2K 12 29 29.6K 17

lastc ≤ yc ; Gcc([T0, ..,Tn−1], {0}, [n− zc]);

Gcc([Z0, ..,Zn−1], {1, ..,max(yc)}, Card);

5 Experiments
We used the Choco-2.1.5 solver on an IntelXeon 2.27GHz for
the first benchmarks and IntelXeon 3.20GHz for last ones,
both under Linux. We compared the propagators (denoted by
F) of WEIGHTEDFOCUS and WEIGHTEDSPRINGYFOCUS
against two decompositions (denoted by D1 and D2), using
the same search strategies, on three different benchmarks.
The first decomposition, restricted to WEIGHTEDFOCUS, is
shown in proposition 4, while the second one is shown in Sec-
tion 4. In the tables, we report for each set the total number
of solved instances (#n), then we average both the number of
backtracks (#b) and the resolution time (T) in seconds.
2 Sports league scheduling (SLS). We extend a single round-
robin problem with n = 2p teams. Each week each team
plays a game either at home or away. Each team plays ex-
actly once all the other teams during a season. We minimize
the number of breaks (a break for one team is two consecutive
home or two consecutive away games), while fixed weights in
{0, 1} are assigned to all games: games with weight 1 are im-
portant for TV channels. The goal is to group consecutive
weeks where at least one game is important (sum of weights
> 0), to increase the price of TV broadcast packages. Pack-
ages are limited to 5 weeks and should be as short as possible.
Table 2 shows results with 16 and 20 teams, on sets of 50 in-
stances with 10 random important games and a limit of 400K
backtracks. max(yc) = 3 and we search for one solution
with h ≤ 7 (instances n-1), h ≤ 6 (n-2) and h ≤ 5 (n-3).
In our model, inverse-channeling and ALLDIFFERENT con-
straints with the strongest propagation level express that each
team plays once against each other team. We assign first the
sum of breaks by team, then the breaks and places.
2 Cumulative Scheduling with Rentals. Given a horizon of
n days and a set of time intervals [si, ei], i ∈ {1, 2, . . . , p},
a company needs to rent a machine between li and ui times
within each time interval [si, ei]. We assume that the cost
of the rental period is proportional to its length. On top
of this, each time the machine is rented we pay a fixed
cost. The problem is then defined as a conjunction of one
WEIGHTEDSPRINGYFOCUS(X, yc , len, h, 0, zc) with a set
of AMONG constraints. The goal is to build a schedule for
rentals that satisfies all demand constraints and minimizes
simultaneously the number of rental periods and their total
length. We build a Pareto frontier over two cost variables, as
Figure 4 shows for one of the instances of this problem. We
generated instances having a fixed length of sub-sequences of

1 2 3 4 5 6 7 8
10

20

30

40

50

y
c

z c

Rentals, n = 47, h=0

Rentals, n = 47, h=1

Figure 4: Pareto frontier for Scheduling with Rentals.

Table 3: Scheduling with Rentals.
40 43 45

h #n #b T #n #b T #n #b T
0 F 20 349K 55.4 20 1M 192.2 20 1M 233.7
0 D1 20 529K 74.7 20 1M 251.2 20 1M 328.6
1 F 20 827M 120.4 20 2M 420.9 19 3M 545.9
2 F 20 826K 115.7 20 2M 427.3 19 3M 571.3

47 50
h #n #b T #n #b T
0 F 19 1M 354.5 18 2M 553.7
0 D1 18 2M 396.8 17 3M 660
1 F 16 4M 725.4 4 6M 984.5
2 F 15 4M 763.9 4 5M 944.8

size 20 (i.e., len = 20), 50% as a probability of posting an
Among constraint for each (i, j) s.t. j ≥ i+5 in the sequence.
Each set of instances corresponds to a unique sequence size
({40, 43, 45, 47, 50}) and 20 different seeds. We summarize
these tests in table 3. Results with decomposition are very
poor. We therefore consider only the propagator in this case.
2 Sorting Chords. We need to sort n distinct chords. Each
chord is a set of at most p notes played simultaneously. The
goal is to find an ordering that minimizes the number of notes
changing between two consecutive chords. The full descrip-
tion and a CP model is in [?]. The main difference here is
that we build a Pareto frontier over two cost variables. We
generated 4 sets of instances distinguished by the numbers of
chords ({14, 16, 18, 20}). We fixed the length of the subse-
quences and the maximum notes for all the sets then change
the seed for each instance.

Tables 2, 3 and 4 show that best results were obtained with
our propagators (number of solved instances, average back-
tracks and CPU time over all the solved instances1). Figure 4
confirms the gain of flexibility illustrated by Figure 1 in Sec-
tion 2: allowing h = 1 variable with a low cost value into
each sequence leads to new solutions, with significantly lower
values for the target variable yc .

6 Conclusion

We have presented flexible tools for capturing the concept of
concentrating costs. Our contribution highlights the expres-
sive power of constraint programming, in comparison with
other paradigms where such a concept would be very difficult
to represent. Our experiments have demonstrated the effec-
tiveness of the proposed new filtering algorithms.

1While the technique that solves the largest number of instances
(and thus some harder ones) should be penalized.

Table 4: Sorting Chords
14 16 18 20

h #n #b T #n #b T #n #b T #n #b T
0 F 30 70K 2.8 30 865K 14.6 28 10M 182.9 16 14M 270.4
0 D1 30 94K 3.2 30 2M 41 28 12M 206.9 13 10M 206.8
0 D2 30 848K 34.9 24 3M 122.3 13 8M 285.6 7 902K 38.7
1 F 30 97K 3.5 30 1K 27.2 28 12K 214.2 14 13M 288.2
1 D2 30 851M 41.5 23 2M 116.3 11 5M 209.9 7 868K 41.5
2 F 30 97K 3.4 30 1M 25.9 28 13M 217.4 13 12M 245.5
2 D2 30 844K 40.9 24 3M 145.1 12 6K 251.6 7 867K 42.8

	Introduction
	Springy FOCUS
	Weighted FOCUS
	Weighted Springy FOCUS
	Experiments
	Conclusion

