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Abstract

In the car-sequencing problem, a number of cars has to be sequenced on an
assembly line respecting several constraints. This problem was addressed
by both Operations Research (OR) and Constraint Programming (CP) com-
munities, either as a decision problem or as an optimization problem. In
this paper, we consider the decision variant of the car sequencing problem
and we propose a systematic way to classify heuristics for solving it. This
classification is based on a set of four criteria, and we consider all relevant
combinations for these criteria. Some combinations correspond to common
heuristics used in the past, whereas many others are novel. Not surprisingly,
our empirical evaluation confirms earlier findings that specific heuristics are
very important for efficiently solving the car-sequencing problem (see for in-
stance [17]), in fact, often as important or more than the propagation method.
Moreover, through a criteria analysis, we are able to get several new insights
into what makes a good heuristic for this problem. In particular, we show
that the criterion used to select the most constrained option is critical, and
the best choice is fairly reliably the “load” of an option. Similarly, branching
on the type of vehicle is more efficient than branching on the use of an option.
Overall, we can therefore indicate with a relatively high confidence which is
the most robust strategy, or at least outline a small set of potentially best
strategies.

Last, following a remark in [14] stating that the notion of slack used in
heuristics induces a pruning rule, we propose an algorithm for this method
and experimentally evaluate it, showing that, although computationally cheap
and easy to implement, this is in practice a very efficient way to solve car-
sequencing benchmarks.
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1. Introduction

The car-sequencing problem comes from the automotive industry and has
a long history in constraint programming. In this problem, a number of cars
have to be sequenced on an assembly line. Each class of cars requires a set
of options. However, the working station handling a given option can only
mount it on a fraction of the cars passing on the line. Each option j is then
associated with a fractional number pj/qj standing for its capacity (no more
than pj cars with this option j should occur in any sub-sequence of length
qj).

The car-sequencing was first introduced as a Constraint Satisfaction Prob-
lem (CSP) modeled using CHIP [2], and later an optimization variant of this
problem was used as benchmark for the Roadef Challenge in 2005 (see [18]
for a survey of the methods used during the Challenge). The decision version
of the problem, that we shall consider in this paper, asks if a given set of
cars can be sequenced on the assembly line in such a way that the line never
has to slow down. This problem is NP-hard in the strong sense [8].

Our contributions are divided in two major points. First, we provide
an empirical study regarding car-sequencing heuristics. To the best of our
knowledge, this is the most complete heuristics study for this problem. For
the experiments, all heuristics are included in a complete chronological back-
tracking method. Moreover, we combine these heuristics to several known
filtering algorithms to evaluate the trade-off between search and propagation.

We show the interest of some new heuristics in our experiments as well as
the impact of the branching strategy comparatively to filtering algorithms.

This empirical study is based on a new classification of heuristics for
the car sequencing. This classification is based on a set of four criteria:
branching variables, exploration directions, selection of branching variables
and aggregation functions for this selection. In particular, we show that the
way of selecting the most constrained option is critical, and the best choice is
fairly reliably the “load” of an option, that is the ratio between its demand
and the capacity of the corresponding machine. Similarly, branching on the
class of vehicle is more efficient than branching on the use of an option.
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Overall, even though results vary greatly from instance to instance, we can
therefore indicate with a relatively high confidence which is the most robust
strategy, or at least outline a small set of potentially best strategies.

Second, we propose a new filtering rule, using the notion of slack intro-
duced by Puget and Régin [14]. This filtering can be used only when variables
are explored in the lexicographic order. However, as shown by Smith [17],
this is a good strategy for this problem. Moreover, this filtering rule greatly
improves the performance of our model whilst being almost free computa-
tionally.

In this paper, we are mainly interested in heuristics for solving the de-
cision variant of the car-sequencing problem, although we shall draw a link
with propagation in Section 5. However, such study provides insights on re-
solving optimization car-sequencing variants. In fact, there are two standard
types of objective functions for the car-sequencing problem. One somehow
counts the number of constraint violations. This is the objective function
used for instance in the Roadef challenge 2005 [18]. The other considers the
delay incurred because of the violations of the capacity constraints. It was
proposed by Hindi and Ploszajski [7] and latter on used in [10, 11, 16]. The
latter objective is a simple and effective way of setting up the assembly line
so that it can run smoothly. In this case, the number of extra empty slots
gives an exact measure of the delay incurred. Solving a sequence of the satis-
faction problem where a number of extra empty slots are added, for instance
through binary search, is a natural way of optimizing this objective function.
Furthermore, methods based on constraint programming are still competitive
and branching heuristics are significantly contributing to this. For instance,
they are relevant within a Large Neighborhood Search (LNS) approach such
as the one proposed in Perron and Shaw [10, 11]. In this context, one needs
to solve a small CSP standing for a small part of the problem. Solving this
sub-problem is expected to be fast, hence we rely on branching and selection
heuristics to speed up this task. The heuristics are therefore likely to make
a significant difference.

The rest of the article is organized as follows. In Section 2, we describe
the car-sequencing problem and discuss the related constraint satisfaction
models. In Section 3, we propose and classify a number of new and existing
heuristics, which we empirically evaluate and analyze in Section 4. Then,
in Section 5, we introduce a simple filtering rule to propagate capacity con-
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straints coupled with cardinality. Finally, we show in Section 6 the interest
of the proposed filtering rule and provide a comparison with state-of-the-art
propagators for this problem as well as other approaches.

2. The Car-sequencing problem

2.1. Problem description

In the car-sequencing problem, n vehicles have to be produced on an
assembly line. There are k classes of vehicles and m types of options. Each
class c ∈ {1, . . . , k} is associated with a demand Dclass

c , that is, the number
of occurrences of this class on the assembly line, and a set of options Oc ⊆
{1, . . . ,m}. Each option is handled by a working station able to process only
a fraction of the vehicles passing on the line. The capacity of an option j is
defined by two integers pj and qj, such that no subsequence of size qj may
contain more than pj vehicles requiring option j.

A solution of the problem is then a sequence of cars satisfying both de-
mand and capacity constraints.

For convenience, we shall also define, for each option j, the correspond-
ing set of classes of vehicles requiring this option Cj = {c | j ∈ Oc}, and the
option’s demand Dj =

∑
c∈Cj D

class
c .

Example 2.1. Consider the simple case of 7 slots (i.e. n = 7) with 3 classes
{c1, c2, c3} and 4 options such that:

• Oc1 = {1, 3}, Oc2 = {2, 3}, Oc3 = {4}.

• Dclass
c1

= 2, Dclass
c2

= 3, Dclass
c3

= 2

• pi/qi (lexicographically): 1/2; 2/3; 3/5; 3/6.

From above, we obtain:

• C1 = {1}, C2 = {2}, C3 = {1, 2} and C4 = {3}

• D1 = 2, D2 = 3, D3 = 5 and D4 = 2

The sequence [c2, c2, c1, c3, c3, c2, c1] is a possible solution for this
instance.
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2.2. Constraint Programming

Many combinatorial problems can be easily formulated using a constraint-
based model. In this approach, the problems are usually solved through com-
plete search tree methods (we refer the reader to [9, 15] for a comprehensive
introduction). The efficiency of this approach depends on several factors: the
heuristics used to select the most promising variables and values; how the
search tree is expanded and how the constraints are propagated during the
search.

The resolution methods that we shall study in this paper are based on
depth-first search with chronological backtracking and propagation. In this
context, we need to decide at each step on which variable should we branch,
and which value it should be assigned to. Both decisions are based on heuris-
tics. Such heuristics can be defined declaratively as a variable and a value
ordering, respectively. We call their combination a branching strategy. We
explore then the search space in a depth-first manner following the variable
and value ordering prescribed by the branching strategy. The efficiency of
this kind of methods clearly relies on the number of expanded nodes during
search. Moreover, the shape and the size of the search tree is highly depen-
dent on the variable and value orderings. The basic principles explaining the
efficiency of variable and value orderings are well known. On the one hand,
we want to choose the value that has the best chances to lead to a solution, if
the current sub-tree has one. This has been called promise [3] or succeed-first
principle. On the other hand, we want to choose the variable that will lead
to fail as soon as possible, when the current sub-tree is inconsistent.

The other crucial factor when exploring the search space is propagation.
A propagator (called also filtering algorithm) associated to a constraint is
a procedure that removes, for some variables, some values (or set of val-
ues) that cannot satisfy the constraint w.r.t the current assignment. The
set of propagators are repeatedly called whenever a domain change occurs
during search until no more reduction is possible. A good trade-off between
heuristics and filtering algorithms is mandatory for better performance.

2.3. Constraint-based models for the car-sequencing

We use a standard CP modeling with two sets of variables. The first set
corresponds to n integer variables {x1, . . . , xn} (called class variables) taking
values in {1, . . . , k} and standing for the class of vehicles in each slot of the
assembly line. The second set of variables corresponds to nm Boolean vari-
ables {y11, . . . , ymn } (called option variables), where yji stands for whether the

5



vehicle in the ith slot requires option j.

There are three sets of constraints.

1. Demand constraints : for each class c ∈ {1..k}, |{i | xi = c}| = Dclass
c .

This constraint is usually enforced with a Global Cardinality Constraint
(Gcc) [13, 12]

2. Capacity constraints : for each option j ∈ {1..m}, no subsequence of

size qj involves more than pj options of this type:
∑i+qj−1

l=i yjl ≤ pj,
∀i ∈ {1, . . . , n− qj + 1}. In order to factor out as much as possible the
propagation aspect from the study, we used several models in order to
diversify the data set. More precisely, we shall consider four models,
differentiated by how capacity constraints are modeled and thus prop-
agated. For each option j, these constraints can be expressed in one of
the following alternatives:

(a) a naive decomposition using sum constraints (denoted by Sum).
(b) a model using the Global Sequencing Constraint (Gsc) proposed

by Régin and Puget [14].
(c) a model using the AtMostSeqCard constraint recently pro-

posed in [16].
(d) a model combining the Gsc and the AtMostSeqCard propa-

gators (since the pruning obtained by both approaches is incom-
parable).

3. Channeling : option and class variables are channeled through simple
constraints: yji = 1 ⇔ j ∈ Cxi ,∀j ∈ {1, ...,m}, ∀i ∈ {1, ..., n}. Each
such constraint is implemented using a set of simple binary constraints
xi = c⇒ yji = 1, ∀j ∈ Oc and xi = c⇒ yji = 0, ∀j ∈ {1, . . . ,m} \ Oc.

2.4. Related work

Regarding the search strategy, two main principles are known to be im-
portant for the car-sequencing problem. First, the sequence of variables to
branch should follow the assembly line itself. Indeed, the structure in chain
of capacity constraints makes it difficult to achieve any inference far away
from a modified variable in the sequence [17]. Second, one should assign the
most constrained class or option first. This has been perceived as a fail-first
strategy, hence surprising since succeed-first strategies should be better for
selecting the next branch to follow. However, as pointed out in [17], since the
solutions to this problem are permutations of a multiset of values, choosing
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the most constrained one when it is still possible actually yields the least
constrained sub-problem. In fact, in this sense, it is indeed a succeed-first
strategy.

In [17], a lexicographical exploration of the integer variables x1 up to xn,
standing for classes of vehicles, was advocated as an interesting search strat-
egy. Three parameters were considered for choosing the most constrained
class: the number of options per class (denoted as max option), the tight-
ness of each option (ie. the capacity constraint q/p) and the usage of each

option (i.e. usage rate d.q/p
n

).

In [14], the authors proposed to branch on option variables yji , exploring
the sequence consistently with their position on the assembly line, however
starting from the middle towards the extremities. Indeed variables at bothe
ends are subject to fewer capacity constraints than variables within the se-
quence. Moreover, they introduced for the first time the notion of slack for
selecting the most constrained option.

In [6], several heuristics were compared for solving an optimization vari-
ant of this problem. These heuristics are based on the usage rate previ-
ously defined for selecting the next variables to assign in the sequence. They
consider two ways for aggregating these values (using the maximum value,
lexicographically, or a simple sum) when branching on class variables. Two
possibilities of using the usage rate were compared : static and dynamic (i.e.
updated at each node). Note that the static values of usage rate, load or
slack are all equivalent. Their experiments showed essentially the interest
of dynamic heuristics comparatively to static ones. The same observation is
made in [1] where a dynamic load was used with a class variable branching
and a simple summation to aggregate the values.

3. Heuristics Classification

3.1. Classification criteria

We propose to classify the heuristics related to this problem according to
four criteria:

• The type of branching decisions: that is whether we branch on classes
or options.

• The order in which we explore the variables along the assembly line:
one can start from the left of the sequence and progress to the right,
or start from the middle of the assembly line widen to the sides.
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• The measure used to select the most constrained options.

• The function used to aggregate the evaluation of the different options
in order to choose the next class of vehicles.

Notice that among the many combinations of these four criteria, some cor-
respond to existing heuristics, however some are novel. For each criterion,
there are several alternatives, we present each of them in the following.

3.1.1. Branching

The branching is either the assignment of a class to a slot, that is, branch-
ing on class variables xi, or the assignment of an option to a slot, that is,
branching on option variables yji . The former was used in [17], while the lat-
ter was proposed in [14]. Notice that when branching on option variables, we
always set it to the value 1, which amounts at forcing to the corresponding
option to be represented in that slot. We therefore consider these two cases
denoted respectively class and opt.

3.1.2. Exploration

Heuristics that do not follow the sequence of variables along the assembly
line generally have poor performances. Indeed, the structure in chain of
capacity constraints makes it difficult to achieve any inference far away from
a modified variable in the sequence [17]. In the literature, two exploration
orders were considered: either lexicographical order on class variables or
from the middle to the sides of the sequence. For each type of variables, we
therefore consider these two exploration cases denoted respectively lex and
mid.

3.1.3. Selection

The best heuristics are those selecting first the most constrained option
or class. Observe that since each class is defined by a set of options, then
all we care about is the hardness of the options. We therefore consider the
following indicators proposed in the literature to select the most constrained
option:

• The capacity qj/pj: The greater the ratio qj/pj, the more constrained

is the option. In fact, a greater ratio qj/pj has more impact on neigh-
boring slots as it is shown in example 3.1.
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Example 3.1. Let o1 and o2 be two options with 1/3 and 2/3 as ca-
pacity ratios (pj/qj) respectively. Consider now a sequence of 5 slots
in which we have to choose between o1 and o2 on the third position.
The two parts of the following figure show the impact of each option.
In fact, by choosing o1, all neighboring slots can no longer contain this
option because of the at most 1/3 constraints.

y1i y2i
0 0 1 0 0 . . 1 . .

• The residual demand (dj): This value is equal to the total demand (of

a given option) minus the number of cars containing this option already
allocated (dj = (Dj −

∑n
i=1min(D(yji ))). Clearly, a greater demand

makes it more difficult to fit the cars requiring this option on the line.

• The load δj: This parameter combines the residual demand with the

capacity ratio: δj = dj
qj
pj

. In fact, this value is tied to the number of

slots required to mount dj times the option j. A greater value of the
load is therefore more constrained.

• The slack σj: Let nj be the number of slots available for option j. The
slack of an option j is σj = nj − δj. Since we want higher values to
indicate more constrained options, we use in fact n− σj.

• The usage rate ρj: This value is defined as the load divided by the

number of remaining slots: ρj = δj/nj. It therefore represents how
much of the remaining space will be occupied by vehicles requiring this
option.

Based on these indicators, we consider five methods to evaluate the op-
tions. Each method returns an indicative value on how constrained is an
option. In other words, the option maximizing the given parameter will be
preferred in the next decision. In the following, we denote the above selection
criteria respectively by q/p, d, δ, n − σ and ρ. Moreover, we consider the
constant function 1 as another possible selection criterion. This is proposed
so that our classification also includes the max option heuristic [17] where
each class is evaluated simply by its number of options. Note also that we
consider only dynamic evaluation with the four criteria : demand, load, usage
rate and slack since they outperform the static versions [1, 6].
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3.1.4. Aggregation

In the case of class branching, since classes are defined as a set of options,
the decision is most often done by summing up the “scores” of the options
for each class. However, there are many ways to aggregate these values. We
therefore propose to add the method used for the aggregation as a fourth
criterion.
Let f : {1, . . . ,m} 7→ R be a scoring function. We denote f(Oc) the tuple
formed by the sorted scores of class c’s options, i.e., f(Oc) = 〈f(j1), . . . , f(j|Oc|)〉
such that {j1, . . . , j|Oc|} = Oc and f(jl) ≥ f(jl+1) ∀l ∈ [1, . . . , |Oc| − 1]. We
shall consider the following ordering relations between classes:

• Sum of the elements (≤∑): c1 ≤∑ c2 iff
∑

v∈f(Oc1 )
v ≤

∑
v∈f(Oc2 )

v.

• Euclidean norm (≤Euc): c1≤Eucc2 iff
∑

v∈f(Oc1 )
v2 ≤

∑
v∈f(Oc2 )

v2.

• Lex order (≤lex): c1≤lexc2 iff f(Oc2) comes lexicographically after f(Oc1).

Example 3.2. To illustrate aggregation functions, we consider example 2.1
and suppose that one branch on classes. In table 1, we give the different
values of each selection parameter for all options.

Table 1: Values of the selection criteria for each option
hhhhhhhhhhhhhhhSelection parameter

Options
1 2 3 4

1 1 1 1 1
q/p 2 1.5 1.66 2
d 2 3 5 2
δ 4 4.5 8.33 4

n− σ 4 4.5 8.33 4
ρ 0.57 0.64 1.19 0.57

In order to emphasize the impact of aggregation functions, we propose to
study the different scores for each class using the q/p parameter. Recall that
each class is defined by a set of options, we obtain in table 2 the corresponding
values for each class.

In table 3, we report the order of preferences given by the different ag-
gregations. The class having the higher score will be selected first and so
on.
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Table 2: Classes’ scores using the parameter q/p

XXXXXXXXXXOptions
Classes

c1 c2 c3

1 2 - -
2 - 1.5 -
3 1.66 1.66 -
4 - - 2

Table 3: Scores & Heuristic decisions
Agg. Scores Heuristic preferences

c1 c2 c3

≤∑ 3.66 3.16 2 [c1, c2, c3]
≤Euc 6.75 5 4 [c1, c2, c3]
≤lex [2, 1.66, -, -] [1.66, 1.5,-,-] [2,-,-,-] [c1, c3, c2]

Although we treat a simple case, one can observe that decisions can be
influenced by aggregation functions. The behavior of ≤lex here was different
from the others. It prefers c3 rather than c2 for the second variable selection.

3.2. Heuristics structure

In the rest of the article, we denote the set of heuristics as follows:
〈{class, opt}, {lex,mid}, {1, q/p, d, δ, n − σ, ρ}, {≤∑,≤Euc,≤lex}〉. Observe,
however, that not all combinations make sense. For instance, the aggregation
function does not matter when branching on options. Therefore, using the
new classification, we obtain 42 possible heuristics:

• 〈{class}, {lex,mid}, {q/p, d, δ, n−σ, ρ}, {≤∑,≤Euc,≤lex}〉: The 30 heuris-
tics that branches on class variables with the two exploration strategies
{lex,mid}, the five selection parameters {q/p, d, δ, n− σ, ρ} and the 3
aggregation techniques {≤∑,≤Euc,≤lex}.
• 〈{opt}, {lex,mid}, {q/p, d, δ, n − σ, ρ}, ∅〉: 10 heuristics branching on

option variables with the two exploration possibilities {lex,mid} and
the five selection parameters {q/p, d, δ, n− σ, ρ}.

• 〈{class}, {lex,mid}, {1}, {≤∑}〉: The two possible heuristics related
to the particular case of max option.

11



Among the many combinations defined by this structure, there are several
existing heuristics as well as new ones. In the literature, only few heuristics
have been studied.

First, the max option heuristic proposed in [17] branches on class vari-
ables lexicographically (lex) and the most constrained class is then selected
using the sum (≤∑) aggregation. It therefore corresponds to 〈class, lex, 1,≤∑
〉.

Second, in [6], the authors proposed to use the usage rage with class
branching, lexicographical exploration (lex) and ≤∑, ≤lex for aggregation.
They correspond to 〈class, lex, δ, {≤∑,≤lex}〉. Similarly, the authors of [1]
proposed a class branching using ≤∑ for aggregation in a lexicographical
exploration (lex), however, using the load δ and the capacity q/p for selection
(i.e. 〈class, lex, {δ, q/p},≤∑〉). Finally, the heuristic proposed in [14] is
based on option branching, exploring the sequence from the middle to the
sides using the slack as a selection criteria. This heuristic corresponds to
〈opt,mid, n− σ, ∅〉.

To the best of our knowledge, all other heuristics are new and there is no
comparative study for evaluating the impact of each classification criterion.

4. Evaluating the new structure

In this section, we evaluate the impact of the proposed classification cri-
teria for the heuristics. We slightly perform randomization as a simple mech-
anism to deal with the Heavy tail phenomena [5]. In particular, with a low
probability (2% for classes and 5% for options1), the second best choice (pro-
vided by the heuristic) is taken.

All the experiments were run on Intel Xeon CPUs 2.67GHz under Linux
and are available via http://homepages.laas.fr/msiala/car-sequencing.
For each instance, we launched 5 randomized runs per heuristic with a 20
minutes time cut-off. All models are implemented using Ilog-Solver.

We use benchmarks available from the CSPLib [4] divided into three
groups. The first group of the CSPLib contains 70 satisfiable instances having
200 cars, 5 options and from 18 to 30 classes, it is denoted by set1. The second
group of the CSPLib corresponds to instances with 100 cars, 5 options and
from 19 to 26 classes. In this group there are 4 satisfiable instances , denoted

1Those values were arbitrarily chosen. The impact of branching on an option variable
being lower, a higher probability was necessary.
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by set2 and 5 unsatisfiable instances denoted by set3. The third group of
the CSPLib contains 30 larger instances (ranging from 200 to 400 vehicles,
5 options and from 19 to 26 classes). Set4 concerns the 7 instances from
this group that are known to be satisfiable. At the top of each table, we
mention, for each data set, the total number of instances with an indication
on their feasibility (i.e. satisfiable: S and unsatisfiable U). The status of
the 23 remaining instances are still unknown. They are often treated in an
optimization context, hence are not considered in our experimentations.

The global set of the 42 previously defined heuristics 〈{class, opt}, {lex,mid},
{1, q/p, d, δ, n− σ, ρ}, {≤∑,≤Euc,≤lex}〉 is combined with four propagators:
〈 Sum, Gsc, AtMostSeqCard, Gsc⊕AtMostSeqCard〉 leading to 168
different configurations. The latter is applied to each set of instances (i.e.
70 + 4 + 5 + 7 instances) with 5 randomized runs. The total average CPU
time for these experiments is around 244 days.

We say that a run (related to an instance and a given configuration) is
successful if either a solution was found or unsatisfiability was proven. For
each set of instances, we report the percentage of successful runs (%sol) 2,
the CPU time (time) in seconds both averaged over all successful runs and
number of instances.

Experimental results are divided in thee parts. We first compare the many
combinations of heuristic factors by giving the results for each one. Then,
we study the proposed classification by evaluating each factor separately.
Finally, we provide a comparison related to the efficiency and confidence of
each factor

4.1. Impact of each heuristic

In this paragraph, we report the results of each heuristic separately on
each set of instances averaged over the four propagators.

The set of heuristics corresponds to all possible combinations of parame-
ters given by: 〈{class, opt}, {lex,mid}, {1, q/p, d, δ, n−σ, ρ}, {≤∑,≤Euc,≤lex}〉
leading to the 42 heuristics presented in Section 3.

Table 4 shows the results of our experiments. For each heuristic, we
indicate in column (Ref) whether it is already known (with the corresponding
reference) or not (with ‘-’). Recall that, in these experiments, we consider

2Since set3 contains only unsatisfiable instances, then %sol corresponds to the percent-
age of instances for which the heuristics prove the unsatisfiability
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only dynamic evaluation with the four criteria : demand, load, usage rate
and slack. For each set of instances, we report the percentage of successful
runs (%sol) and the CPU time (time). The last two columns summarize the
results over all set of instances. The column (%tot) gives the total percentage
of solved instances and the column (%dev) gives the deviation in percent of
a given heuristic to the heuristic solving the maximum number of instances.
Bold values give the best heuristics w.r.t %sol.

For the easiest set (set1), 16 heuristics solve all instances in less than
a second. Among them, 3 are known heuristics whereas 13 correspond to
new combinations. It should be noted that all these configurations use a
class branching and a load-based selection (i.e. ρ, δ, n − σ). Interestingly,
twisting one parameter from a heuristic can have a dramatic effect. For
instance, the heuristic 〈opt, lex, n − σ, ∅〉 resolves only 32, 71% of this set
whereas changing only the branching criterion to class (i.e. 〈class, lex, n −
σ, {≤lex,≤∑,≤Euc}〉) leads to a complete resolution (i.e. 100%).

For set2 and set3, the heuristic 〈opt, lex, ρ, ∅〉 gives the best results with
75% in 33.3s for set2 and 25% in 211.3s for set3. Also, the heuristics
〈class,mid, d, {≤lex,≤Euc}〉 has the same number of successful runs com-
pared to 〈opt, lex, ρ, ∅〉 but with higher resolution time. All of these heuristics
correspond to new configurations.

Finally, for set4, the best heuristics resolve 25.71% in approximately 3s
and correspond to the configurations 〈class, lex, {δ, ρ, n−σ},≤lex〉. Another
heuristic 〈class, lex, d,≤lex〉 obtains the same percentage but with higher
computation time (55.3s).

Overall, the heuristic that has the best results across all data sets and
therefore seems to be the more robust is 〈class, lex, δ,≤lex〉 with 86.8% of
solved instances (according to the column ‘Total’). More generally, heuristics
using load-based selection (i.e. δ, n − σ and ρ) and class branching obtain
better results than the other configurations.

4.2. Criteria analysis

In this part, we aim to evaluate the relative impact of each classification
criterion. For each criterion and each data set, we divide all the runs into
as many sets as the number of possible values for this criterion. Then, we
average the results within each set. For instance, exploration can be done
either lexicographically (lex), or from the middle to the sides (mid). We will
thus report two sets of statistics, one for lex and one for mid. Each average
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Table 4: Comparison of heuristics averaged over propagation rules

Heuristics Ref. Instances Total
set 1 (70, S) set 2 (4, S) set 3 (5, U) set 4 (7, S)

Sel. Br. Expl. Aggr. %sol time %sol time %sol time %sol time %tot %dev

ρ
class

lex
≤lex [6] 100.00 0.6 52.50 59.1 0.00 - 25.71 2.9 85.93 1.00
≤∑ [6] 100.00 0.6 48.75 0.2 0.00 - 10.71 84.4 84.53 2.61
≤Euc - 100.00 0.6 30.00 0.2 0.00 - 12.85 156.3 83.84 3.42

mid
≤lex - 99.92 0.5 53.75 163.5 0.00 - 16.42 50.0 85.17 1.88
≤∑ - 100.00 0.5 51.25 236.6 0.00 - 18.57 5.4 85.29 1.74
≤Euc - 100.00 0.5 51.25 249.3 0.00 - 17.14 30.2 85.17 1.88

opt
lex - - 87.00 1.9 75.00 33.3 25.00 211.3 5.71 533.4 76.22 12.19
mid - - 87.64 2.9 31.25 0.4 23.00 233.6 14.28 171.1 75.29 13.26

n− σ
class

lex
≤lex - 100.00 0.6 52.50 59.2 0.00 - 25.71 2.8 85.93 1.00
≤∑ - 100.00 0.6 48.75 0.2 0.00 - 10.71 78.6 84.53 2.61
≤Euc - 100.00 0.6 48.75 0.1 0.00 - 10.71 79.4 84.53 2.61

mid
≤lex - 100.00 0.6 53.75 169.7 0.00 - 18.57 33.1 85.41 1.61
≤∑ - 100.00 0.5 51.25 236.9 0.00 - 22.14 29.0 85.58 1.41
≤Euc - 99.92 0.5 51.25 236.3 0.00 - 22.14 28.8 85.52 1.48

opt
lex - - 32.71 21.7 43.75 236.8 13.00 190.7 0.00 - 29.42 66.11
mid - [14] 38.14 13.0 26.25 33.7 18.00 260.8 0.00 - 33.31 61.62

δ
class

lex
≤lex - 100.00 0.6 71.25 42.4 0.00 - 25.71 3.0 86.80 0.00
≤∑ [1] 100.00 0.6 48.75 0.3 0.00 - 10.71 100.2 84.53 2.61
≤Euc - 100.00 0.6 48.75 0.3 0.00 - 10.71 87.3 84.53 2.61

mid
≤lex - 100.00 0.5 37.50 38.2 0.00 - 15.00 51.5 84.36 2.81
≤∑ - 100.00 0.5 68.75 167.9 0.00 - 20.71 42.8 86.28 0.60
≤Euc - 100.00 0.5 68.75 166.5 0.00 - 20.00 16.2 86.22 0.67

opt
lex - - 98.57 1.2 36.25 111.7 0.00 - 22.85 5.8 83.78 3.48
mid - - 98.92 3.7 43.75 3.8 0.00 - 21.42 88.8 84.29 2.89

q/p
class

lex
≤lex - 82.85 7.8 0.00 - 0.00 - 0.00 - 67.44 22.31
≤∑ [1] 83.35 10.1 18.75 0.1 0.00 - 0.00 - 68.72 20.84
≤Euc - 83.42 11.3 18.75 0.09 0.00 - 0.00 - 68.77 20.77

mid
≤lex - 84.71 7.9 18.75 95.7 0.00 - 0.00 - 69.82 19.56
≤∑ - 85.35 7.7 18.75 100.9 0.00 - 0.00 - 70.34 18.96
≤Euc - 84.64 7.5 18.75 96.0 0.00 - 0.00 - 69.77 19.63

opt
lex - - 65.71 73.3 0.00 - 0.00 - 0.00 - 53.48 38.38
mid - - 70.71 29.8 12.50 606.4 0.00 - 0.00 - 58.14 33.02

d
class

lex
≤lex - 90.92 1.2 37.50 47.4 0.00 - 25.71 55.3 77.84 10.32
≤∑ - 95.07 1.9 41.25 48.5 0.00 - 17.14 21.5 80.70 7.03
≤Euc - 94.50 0.7 43.75 106.5 0.00 - 23.57 40.2 80.87 6.83

mid
≤lex - 90.64 1.9 75.00 83.4 0.00 - 24.28 5.3 79.24 8.71
≤∑ - 94.71 0.6 67.50 68.9 0.00 - 13.57 53.9 81.33 6.30
≤Euc - 94.57 0.6 75.00 83.2 0.00 - 15.71 50.7 81.74 5.83

opt
lex - - 73.78 2.9 56.25 79.5 0.00 - 0.71 282.0 62.73 27.73
mid - - 77.28 13.7 43.75 5.2 0.00 - 7.85 16.5 65.58 24.45

1 class
lex ≤∑ [17, 1] 86.92 13.2 18.75 0.1 0.00 - 0.00 - 71.62 17.49
mid ≤∑ - 89.92 8.3 63.75 20.3 0.00 - 0.00 - 76.16 12.26

will be over one run per possible completion of the heuristic (21), filtering
algorithms (4), randomized runs (5), and instances in the data set.
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The following tables (5, 6, 7 and 8) are split in two parts. In the upper
one, we report the results for each set and each possible criterion w.r.t the
criterion being used averaged over all other criteria. The lower part shows
the best results obtained for any possible combination of the other criteria.
In these tables, we report the percentage of successful runs (%sol), the CPU
time (time) in seconds both averaged over all successful runs, instances and
heuristic criteria. Bold values indicate best results in terms of successful
runs (%sol). Moreover, in the upper tables, the last column (%tot) gives the
percentage of solved instances over the all sets.

4.2.1. Branching strategy

Here we compare the two branching strategies: class and opt. We tested
all the possible combinations of heuristics for each strategy. However, as the
constant selection parameter 1 is not defined for opt variables, we do not
consider its heuristics in the following table.

When branching on opt variables, we have defined 10 heuristics (since
aggregation functions are omitted): 〈opt, {lex ,mid}, {q/p, d, δ, n−σ, ρ}, ∅〉,
that is 200 tests for each instance. To have consistent comparison with
class branching, we separate its results by aggregation functions. That is
〈class, {lex ,mid}, {q/p, d, δ, n−σ, ρ},≤lex〉, 〈class, {lex ,mid}, {q/p, d, δ, n−
σ, ρ},≤Euc〉 and 〈class, {lex ,mid}, {q/p, d, δ, n− σ, ρ},≤∑〉.

Table 5: Evaluation of the branching variants

Av. Bran. set1 (70, S) set2 (4, S) set3 (5, U) set4 (7, S) Global
(×200) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
opt 73.0 102023.9 14.1 36.8 287139.5 82.0 7.9 53275.4 225.6 7.2 207502.8 107.9 62.2

class,≤lex 94.9 26120.0 2.0 45.2 481410.8 84.9 0.0 - - 17.7 98707.8 22.5 80.7
class,≤∑ 95.8 27209.1 2.1 46.3 327601.5 95.7 0.0 - - 12.4 156300.3 44.6 81.1
class,≤Euc 95.7 27563.3 2.1 45.5 463196.6 107.9 0.0 - - 13.2 107599.7 52.9 81.0
Best Bran.

opt 100.0 98577.4 10.3 75.0 7251.3 0.5 40.0 46211.8 261.8 25.7 629016.8 130.7
class,≤lex 100.0 184.7 0.0 100.0 730687.4 89.5 0.0 - - 28.5 29632.6 58.5
class,≤∑ 100.0 184.2 0.0 95.0 904739.2 96.3 0.0 - - 25.7 34705.3 54.8
class,≤Euc 100.0 184.4 0.0 100.0 211830.5 128.8 0.0 - - 28.5 47435.1 75.4

The upper part of Table 5 shows that branching on classes is usually
better than branching on options. However, the latter is more efficient on
proving infeasibility (i.e. line opt on set3). The most efficient branching
averaged over the other factors is with the aggregation ≤∑ but the two
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other aggregation (≤lex or ≤Euc) are closed. This result is confirmed by the
lower part of the table.

4.2.2. Exploration

To evaluate the exploration parameters, we consider for each ω ∈ {lex,mid}
the following heuristics:

• 〈class, ω, {q/p, d, δ, n− σ, ρ}, {≤∑,≤Euc,≤lex}〉.
• 〈opt, ω, {q/p, d, δ, n− σ, ρ}, ∅〉.

• 〈class, ω, {1}, {≤∑}〉.
These three sets cover all possible combinations of heuristics leading to

420 tests for each parameter ω ∈ {lex,mid} and each instance. The results
are shown in Table 6.

Table 6: Evaluation of the exploration variants

Av. Expl. set1 (70, S) set2 (4, S) set3 (5, U) set4 (7, S) Global
(×420) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
lex 89.2 50617.6 5.6 40.0 259229.0 46.6 1.8 52295.1 204.3 11.3 120652.6 54.2 75.5
mid 90.3 42167.0 4.1 46.7 479360.9 126.5 1.9 54184.0 245.5 12.7 139829.4 42.8 76.8

Best Expl.
lex 100.0 184.8 0.0 100.0 730687.4 89.5 40.0 46211.8 261.9 28.5 29632.6 58.5
mid 100.0 183.5 0.0 100.0 213028.8 129.1 36.0 63984.8 307.6 28.5 1357.4 9.2

In the first part of table 6, we can see that exploring the sequence from
the middle then widening to the sides is in average slightly but consistently
beneficial. Recall that the rationale for starting in the middle is that variables
in the extremities are subject to fewer capacity constraints.

However, in the second part of table 6, we can see that in terms of suc-
cessful runs, exploring the sequence using the lexicographical order leads to
better results for proving unsatisfiability. This could be explained by the
fact that when starting in the middle of the sequence, we effectively split the
problem into essentially disjoint subproblems (there is actually a weak link
through demand constraints).

Overall, the exploration parameter does not seem to be as critical as the
branching parameter.
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4.2.3. Selection

Here, we evaluate the selection criterion for choosing the most-constrained
option. In this case, there are two possible sets of heuristics for each param-
eter ω ∈ {q/p, d, δ, n− σ, ρ}:

• 〈class, {lex,mid}, ω, {≤∑,≤Euc,≤lex}〉
• 〈opt, {lex,mid}, ω, ∅〉

That is 8 heuristics for each ω combined with the 4 propagators and the
5 runs. We therefore have 160 tests for each instance (reported in table 7).

The special case of max option is presented separately at the end of
Table 7 because the number of tested heuristics is different. In this case,
there is only 2 heuristics 〈class, 1, {lex,mid}, {≤∑}〉, that is 40 tests for
each instance.

Table 7: Evaluation of the selection variants

Av. Selec. set1 (70, S) set2 (4, S) set3 (5, U) set4 (7, S) Global
(×160) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
ρ 96.8 1628.8 1.0 49.2 480035.3 99.9 6.0 49922.8 222.0 15.1 136850.7 81.7 82.6

n− σ 83.8 5773.4 2.3 47.0 699885.1 126.9 3.8 58466.5 231.4 13.7 103897.2 33.3 71.7
δ 99.6 3292.6 1.0 52.9 254264.1 74.8 0.0 - - 18.3 98161.0 41.5 85.1
q/p 80.0 195896.5 17.7 13.2 135511.2 123.0 0.0 - - 0.0 - - 65.8
d 88.9 25988.2 2.7 55.0 254347.0 68.8 0.0 - - 16.0 185381.6 36.8 76.2

1 (×40) 88.4 130722.2 10.7 41.2 28165.2 15.8 0.0 - - 0.0 - - 73.8
Best Selec.

ρ 100.0 184.8 0.0 75.0 7251.3 0.5 40.0 46211.8 261.9 25.7 4843.0 0.4
n− σ 100.0 184.8 0.0 75.0 1009607.4 124.1 32.0 75445.9 351.0 25.7 4843.0 0.4
δ 100.0 184.8 0.1 100.0 730687.4 89.5 0.0 - - 25.7 4843.0 0.4
q/p 98.8 7208.4 3.4 25.0 68.2 0.1 0.0 - - 0.0 - -
d 100.0 178.7 1.2 100.0 213028.8 129.1 0.0 - - 28.5 29632.6 58.5
1 99.7 58773.0 9.9 85.0 51740.9 36.9 0.0 - - 0.0 - -

The upper part of Table 7 shows that using the load solves more instances
in average over the all sets and for satisfiable sets (set1, set2 and set4) only.
Surprisingly, the load gives better results than slack and usage rate, despite
the fact that both slack and usage rate are defined using the load and the
number of available slots in the variable’s sequence. However the usage rate
criteria seems to work better both in average and for the best results for
unsatisfiable instances. Moreover, in the second part of the table, one can
note that the demand obtains good results.
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This can be explained by the manner in which the benchmarks were
generated. In fact, these instances, especially the hardest ones, are built in
such way that they have a usage rate close to 1 [4]. Since the number of
available slots is initially identical for all options, they also have the same
(low) slack and the same (high) load. Therefore the heuristics based on these
criteria (ie. load, slack and usage rate) cannot effectively discriminate values
at the root of the search tree. However, recall that the load is defined as the
product of the demand and the capacity. These two factors do not contribute
equally, and therefore will favor different sets of options. In other words, one
of them is bound to take a better decision, whilst the other is bound to take
a worse one. We believe that this bias in the generation of the benchmarks
explains the surprisingly good results of the demand (d) as well as the bad
results of the capacity q/p along with the load, the slack and the usage rate.

4.2.4. Aggregation

Aggregation functions are only used with class branching. For each pa-
rameter ω ∈ {≤lex ≤∑ ≤Euc}, we have the 10 following heuristics combined
with the propagators and the random runs (i.e. 200 tests for each ω and each
instance):

• 〈class, {lex,mid}, {q/p, d, δ, n− σ, ρ}, ω〉

The constant parameter for selection 1 is not considered in these experiments
since it is only defined with the ≤∑ aggregation. The results are given in
Table 8.

Table 8: Evaluation of the aggregation variants

Av. Agg. set1 (70, S) set2 (4, S) set3 (5, U) set4 (7, S) Global
(×200) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
≤lex 94.9 26120.0 2.0 45.2 481410.8 84.9 0.0 - - 17.7 98707.8 22.5 80.7
≤∑ 95.8 27209.1 2.1 46.3 327601.5 95.7 0.0 - - 12.4 156300.3 44.6 81.1
≤Euc 95.7 27563.3 2.1 45.5 463196.6 107.9 0.0 - - 13.2 107599.7 52.9 81.0

Best Agg.
≤lex 100.0 184.7 0.0 100.0 730687.4 89.5 0.0 - - 28.5 29632.6 58.5
≤∑ 100.0 184.2 0.0 95.0 904739.2 96.3 0.0 - - 25.7 34705.3 54.8
≤Euc 100.0 184.4 0.0 100.0 211830.5 128.8 0.0 - - 28.5 47435.1 75.4

As we can see in the first part of this table, the three aggregation functions
provide in average similar results except for the hardest instances (set4) where
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≤lex solved more instances. Considering all instances, ≤∑ solves the large
number of problems. No solution were found for unsatisfiable instances as in
our case, only opt branching can solve these instances (i.e. which by default
do not use any aggregation function). However, regarding the best results
in the second part of the table, when using ≤lex and ≤Euc, one can obtain
better performances in terms of resolved instances.

4.3. Criteria Analysis Conclusions

We have previously evaluated the average best choice of each criterion
(in terms of solved instances). However, this choice is not the best on each
set of instances. Instead, we can determine the best choice for each data set,
called the “perfect” choice. The Confidence of the average best choice can
then be defined by the ratio between the average best choice and the perfect
choice. Similarly, we can consider the “worst” choice for each data set, and
subsequently, define the Significance of a given factor using the ratio between
the worst and the perfect choice as 1− worst/perfect.

Table 9: Confidence and significance for each factor

Confidence Significance

Branching 0.989 0.247
Selection 0.995 0.231

Exploration 1.000 0.017
Aggregation 0.995 0.015

In Table 9, we give the values of Confidence and Significance for each fac-
tor (branching, selection, exploration and aggregation)This table shows that
there is high confidence for each selected average best choice (between 0.989
and 1.0): that is, exploration from middle to sides using a class branching,
load selection, and a sum aggregation. When considering the significance of
each criterion, one can observe that only two of them (branching and selec-
tion) have a valuable impact. For the two other criteria (i.e. exploration
and aggregation), there is little impact on the results when changing the
parameters.

Therefore, the most robust heuristics will be those branching on classes
variables and selecting options using the load criterion, that is 〈class, {lex,mid}, δ, {≤∑
,≤Euc,≤lex}〉.
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5. Slack-based Filtering Rule

When analyzing the heuristics, we have seen that selecting the options
using the load, the slack, or the usage rate is beneficial. In this section, we
shall see that one can go one step further, and use the same idea to prune
the search tree at a very cheap computational cost.

5.1. Slack and Pruning the Search Tree.

In [14], it is observed that if the slack (σj) of an option j is negative,
then the problem is unsatisfiable. Indeed, the load (δj) tends to represent
the number of required slots to mount all the occurrences of an option. Since
the slack is the difference between the available number of slots and the
load, a negative value suggests infeasibility since we need more slots than are
available. However, one has to be careful about boundaries issues since the
capacity constraints are truncated at the extremities of the assembly line.
For instance, consider an option j with pj = 1, qj = 3 and dj = 2. The
slack is negative as soon as there are less then six slots remaining (nj < 6),
however a line with only four slots is sufficient if we put the two classes
requiring this option on both ends of the line. In other words, the load is an
accurate measure of how many slots are needed for a given option, however
only for large values of demand and length of the assembly line.

In order to take into account this issue of boundaries, we propose the
following alternative definition for the load.

δ′j = qj(ddj/pje − 1) +

{
pj if dj mod pj = 0

dj mod pj otherwise

Notice however that the formula above is true only if the unassigned slots
are contiguous in the assembly line. Therefore, in the following we assume
that we explore the assembly line from left to right, and we describe a simple
rule to filter the domain of a sequence of Boolean variables y1, . . . , yn subject
to capacity constraints with a fixed cardinality. (i.e.

∑q
l=1 yi+l ≤ p ∀i ∈

[1, . . . , n− q + 1] and
∑n

i=1 yi = d)

Proposition 5.1. For each option j, δ′j is a lower bound on the number of
required slots.

Proof. Consider a sequence of δ′j unassigned Boolean variables subject to a
capacity constraint pj/qj and a demand dj. Now assign the first pj variables
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Figure 1: Assignment of an option with capacity 3/5.

yj 0 1 1 1 2 1 3 0 4 0 5 1 6 1 7 1 8 0 9 0 10 1 11 1 12 1 13 0 14 0 15 1 16 1
3 2 6

to 1, then the qj − pj next variables to 0 and repeat this (ddj/pje− 1) times.
Then fill the remaining variables with the value 1. The sequence built in this
way is of length δ′j and cardinality dj. Moreover, every subsequence of length
qj has exactly pj times the value 1, therefore, it is not possible to obtain the
same cardinality in a shorter sequence, hence δ′j is a lower bound. �

5.2. Filtering the Domains

We suppose now that all variables up to a rank i − 1 are ground. To
make the notation lighter we rename the sequence of unassigned variables
yi, . . . , yn to: y0, . . . , yn−i.

When the real load δ′ is greater than the residual number of slots n−i+1,
then we should fail since δ′ is a lower bound on the number of required slots.
When δ′ = n − i + 1, we can filter out some values. Moreover, we can
prune inconsistent values in the domains of the option variables when the
load is equal to the remaining number of slots. We illustrate this situation
in Example 5.1

Example 5.1. Figure 1 shows a possible assignment for a sequence yj0, . . . , y
j
16,

with capacity 3/5 and demand 11. Consider the two slots indexed 5 and 6,
corresponding to the variables yj5 and yj6. On the left, there are 5 slots, hence
we can fit at most 3 vehicles with the option j, indeed fitting 4 vehicles requires
6 = 5(d4/3e−1)+4 mod 3 slots. Similarly, on the right, one cannot fit more
than 6 vehicles with option j since fitting 7 vehicles would require 11 slots.
Therefore, since the total demand is 11, we can conclude that 11− 6− 3 = 2
vehicles with option j must fit in the slots 5 and 6. In other words, both yj5
and yj6 must be equal to 1.

Now we formally define a pruning rule that can detect all such forced
assignments (e.g., it detects all bold faced 1’s in Figure 1).

Theorem 5.1. The following filtering rule is correct:
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If δ′ = n − i + 1, then if d mod p = 0, we impose yi = 1 for all i such
that i mod q < p. Otherwise (i.e. d mod p 6= 0), we impose yi = 1 for all i
such that i mod q < (d mod p).

Proof. Suppose that (d mod p 6= 0). Then there exists two integers k and r
such that d = k.p+r. Notice that in this case, we have δ′ = q.k+r. Consider
a subsequence ya, . . . , yb such that a mod q = 0 and b = a + r − 1, i.e., such
that the rule above applies. Then there exist two integers α and β such that
a = α · q and n− i− b = β · q (since n− i+ 1 = δ′ = q.k + r).

Now using n− i− b = β · q, we show that n− i+ 1 = β · q + a+ r then
n− i+ 1 = (α + β) · q + r and hence k = α + β (since n− i+ 1 = q.k + r).

However, by definition of α and β, we may argue that the number of
occurrences of the value 1 on y0, . . . , ya−1 is at most α · p and at most β · p
on yb+1, . . . , yn−i.

Now since the demand d = (α + β).p + r then all the p variables the
subsequence ya, . . . , yb must take the value 1.

We use a similar argument for the second case. Suppose that d mod p = 0,
consider a subsequence ya, . . . , yb such that a mod q = 0 and b = a+ p − 1.

Then there exist two integers α and β such that a = α·q and n−i−b = β·q.
Therefore, the number of occurrences of the value 1 on y0, . . . , ya−1 is at most
α · p and at most β · p on yb+1, . . . , yn−i.

Now using the demand d = k · p, and δ′ = q (dd/p e − 1) + p we show
that n − i + 1 = q(k − 1) + p. However, since b = a + p − 1, a = α · q and
n − i − b = β · q, then k = α + β + 1 and all p variables the subsequence
ya, . . . , yb must take the value 1. �

Figure 2 and 3 depict the proposed pruning. On the one hand, when
d mod p = 0, the only possible arrangement of vehicles that satisfy the ca-
pacity constraint is to start the sequence with p vehicles requiring the option,
then q−p vehicles not requiring the option and repeat (see Figure 2). Notice
that because of the capacity constraint, all other variables must take the
value 0. On the other hand, when d mod p 6= 0, one must start the sequence
with d mod p vehicles requiring the option, then the following q− (d mod p)
slots can be filled arbitrarily as long as exactly p vehicles requiring this op-
tions are fitted in the q first slots. Here again, the initial sequence must be
repeated throughout (see Figure 3).

5.3. Time Complexity
Observe that this rule is extremely cheap to enforce. Once one has com-

puted the load, the domain filtering can be achieved in O(k) where k is
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Figure 2: Filtering when d mod p = 0
p q − p

1 1 .. 1 0 0 .. 0

p q − p

1 1 .. 1 0 0 .. 0 ..

p q − p

1 1 .. 1 0 0 .. 0

p

1 1 .. 1

Figure 3: Filtering when d mod p 6= 0
d mod p q − (d mod p)

1 1 .. 1 xx .. x

d mod p q − (d mod p)

1 1 .. 1 xx .. x ..

d mod p q − (d mod p)

1 1 .. 1 xx .. x

d mod p

1 1 .. 1

the number of option variables forced to take the value 1. Indeed, when
d mod p 6= 0 we can jump over the variables which are not forced to take the
value 1, since their position is given by a simple recursion. In the worst case,
i.e., when d mod p = 0, this is the same time complexity as achieving arc
consistency on the AtMostSeqCard constraint [16]. However whilst the
propagator of AtMostSeqCard always achieves its worst case complexity,
this rule rarely does in practice.

6. Evaluating the filtering rules

In order to evaluate the slack-based filtering rule, we propose to compare
its results against the other propagators. Notice first that, as we mentioned in
section 5, this rule can be applied only with lex branching. In fact, we can use
the following set of heuristics 〈{class, opt}, lex, {1, q/p, d, δ, n − σ, ρ}, {≤∑
,≤Euc,≤lex}〉. That is 21 different heuristics for each filtering algorithm. The
experiments concern 9030 configuration per propagator.

Table 10: Evaluation of the filtering variants (averaged over all heuristics)

Filtering (×21) set1 (70× 5) set2 (4× 5) set3 (5× 5) set4 (7× 5) Global
%sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot

sum 75.8 190636.0 11.2 22.6 792179.8 44.4 0.0 - - 7.7 194651.7 17.0 63.4
Gsc 94.8 1639.4 4.2 44.0 38673.7 49.2 2.8 49417.9 260.8 12.1 35302.0 64.3 80.4

AtMostSeqCard 91.2 36285.7 3.9 49.2 411514.8 46.2 1.5 68873.9 15.1 13.1 239317.8 41.4 77.7
Gsc⊕AtMostSeqCard 95.1 1585.1 4.3 44.0 35711.3 45.4 2.8 46330.2 248.6 12.5 32258.4 80.9 80.6

Slack-based 90.5 55384.8 3.8 43.3 627443.4 43.9 1.7 82815.9 16.1 12.2 356073.4 34.8 76.7

Table 10 shows that the extra filtering of the rule we introduced or from
the existing ones (i.e. AtMostSeqCard, Gsc and Gsc⊕AtMostSeqCard)
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Table 11: Best results for filtering variants

Filtering
set1 (70× 5) set2 (4× 5) set3 (5× 5) set4 (7× 5)

%sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time
sum 100.0 184.8 0.0 75.0 7251.3 0.5 0.0 - - 25.7 4843.0 0.4
Gsc 100.0 184.8 1.2 75.0 18073.7 58.2 40.0 46211.8 261.9 28.5 29632.6 58.5

AtMostSeqCard 100.0 184.8 0.0 100.0 730687.4 89.5 20.0 60460.4 13.5 28.5 31617.6 6.0
Gsc⊕AtMostSeqCard 100.0 184.8 1.2 75.0 16923.7 55.0 40.0 46196.7 259.7 28.5 17252.6 40.8

Slack-based 100.0 184.3 0.0 75.0 510189.0 35.1 20.0 70573.6 14.0 28.5 332430.9 34.3

does help a lot. For instance, at least 90% of the instances of the first set
are resolved irrespectively of the heuristic being used against 75,89% with
the default decomposition (i.e. sum). The difference is even greater for the
other sets.

At the outset, the gain of the new propagator seems comparable with
the others. However, this method is in fact very different from the Gsc and
quite close to the AtMostSeqCard constraint.

The Gsc constraint saves many more backtracks than the others. It does
not subsume the pruning of our filtering rule, but it is much stronger in
terms of search tree size. However the overhead of our method is negligible,
whereas Gcs greatly slows down the search at the same time that it reduces
its size.

Consider now the propagation method as a fifth criterion (i.e. in addi-
tion to the heuristic factors). We calculated its Confidence and Significance
according to the same formula given in Section 4.3. Their values are equal to
(respectively) 0.996 and 0.217. This is similar to all other criteria in terms of
confidence (i.e. between 0.989 and 1.0), but slightly less than the Significance
of branching and selection. This emphasizes the importance of these factors
which are at least as important as the propagation level.

Overall, we observe that the choice of the search strategy has a very
significant impact on the efficiency of the method. For instance, on the set of
easiest instances, when averaging across all heuristics, the “worst” filtering
method (decomposition into sum constraints) is successful in about 20% less
runs than the best (Gsc+ AtMostSeqCard).

However, now averaging across all four models, the worst heuristic 〈opt, lex, n−
σ,−〉, is successful 56% less runs than one of the many heuristics solving all
easy instances (see table 4). For harder instances (set2, 3 and 4), these choices
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are even more important, with a 42% gap between the best and worst model,
whilst the worst heuristics (in this case 〈opt, lex, p/q,−〉) do not solve any in-
stances. It is hardly a surprise to observe that the choice of search strategy is
a critical one. However, whilst the aim of this study was to better understand
what makes a good heuristic for the car-sequencing problem, it was relatively
surprising to find out that minor variations around known heuristics would
bring such a substantial gain.

Finally, as a comparison with other CP-based methods [19, 10, 6]. The
first set was totally resolved in less than a second unlike other methods. The
second set results are as good as the best ones. However, the Regular
constraint [19] maintains best results for proving infeasibility by a difference
of one instance. We are not aware of any approach treating the fourth set of
as decision problems. These instances are often treated in an optimization
context.

7. Conclusion

Throughout this paper, we empirically studied a large set of heuristics
for the car-sequencing problem and proposed to classify these heuristics us-
ing 4 criteria: branching variables, exploration directions, parameters for the
selection of branching variables, and aggregation functions for these crite-
ria. The experiments show the interest of some classification criteria (the
branching and the selection) and a low impact of the other criteria (explo-
ration directions and aggregation functions). Moreover, the study shows that
one criterion can drastically effect the heuristic behavior.

The second contribution of this paper is the slack-based filtering algo-
rithm. Even though quite simple and easy to implement, the filtering algo-
rithm introduced in this paper is often as good as state-of-the-art propagators
for the car-sequencing problem, and better in some cases.

A natural extension of this analysis is to study the impact of these heuris-
tics for solving optimization variants for the car-sequencing problem. Such
study gives insights for the industrial and optimization communities working
on this problem. This can be achieved by decomposing the problem into a
sequence of satisfaction problems or by using branching strategies directly
within meta-heuristics such as Local Search and Ant Colony Optimization
(see for instance [6]).
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