
Revisiting Two-Sided Stability Constraints?

Mohamed Siala and Barry O’Sullivan

Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Ireland
{mohamed.siala|barry.osullivan}@insight-centre.org

Abstract. We show that previous filtering propositions on two-sided
stability problems do not enforce arc consistency (AC), however they
maintain Bound(D) Consistency (BC(D)). We propose an optimal algo-
rithm achieving BC(D) with O(L) time complexity where L is the length
of the preference lists. We also show an adaptation of this filtering ap-
proach to achieve AC. Next, we report the first polynomial time algo-
rithm for solving the hospital/resident problem with forced and forbidden
pairs. Furthermore, we show that the particular case of this problem for
stable marriage can be solved in O(n2) which improves the previously
best complexity by a factor of n2. Finally, we present a comprehensive
set of experiments to evaluate the filtering propositions.

1 Introduction

Many real world problems involve matching preferences between two sets of
agents while respecting some stability criteria. For instance, in College Admis-
sions one needs to assign students to colleges while respecting the students’
preferences over colleges, the colleges’ preferences over students, as well as col-
lege quotas [3]. Gale and Shapley introduced the first polynomial time algorithm
for solving this problem in their seminal paper [3]. Since then a number of algo-
rithms have been proposed for solving variants of these problems. Such ad-hoc
methods are unlikely to be reusable if there are minor changes to the problem.

Constraint programming (CP) is a rich framework for modelling and solv-
ing many combinatorial problems. Expressing problems involving preferences in
CP is extremely beneficial for tackling variants that involve side constraints. We
consider the notion of two-sided stability as a global constraint. We first make
the observation that the previous CP propositions on two-sided stability prob-
lems (such as [4, 9, 7, 10]) do not enforce Arc Consistency (AC), however they
do maintain Bound(D) Consistency (BC(D)). We propose an incremental algo-
rithm that achieves BC(D) with O(L) time complexity where L is the length of
the preference lists, thereby improving the previously best known complexity of
O(c × L) (where c is the maximum quota). We also present, for the first time,
an adaptation of the filtering to achieve AC on this global constraint with an
additional cost of n× L (where n is the number of residents).

? This research has been funded by Science Foundation Ireland (SFI) under Grant
Number SFI/12/RC/2289.

Based on the BC(D) propagator, we show that the hospital/resident problem
with forced and forbidden pairs can be solved in polynomial time. Furthermore,
we show that the particular case of this problem for stable marriage can be solved
in O(n2) which improves the previously best complexity by a factor of n2. Finally,
we present a set of experiments to evaluate the filtering efficiency on randomly
generated instances. The experimental results show compelling evidence that
AC does further prune the search space as compared with BC(D), however, it
considerably slows down the exploration of the search space.

The remainder of the paper is organized as follows. In Section 2 we give the
definitions and the notation used throughout the paper. In Section 3 we show
that the level of filtering of previous CP approaches is only BC(D). Next, we
show an optimal implementation of a BC(D) algorithm running in O(L) time
in Section 4. We also show how to use the same algorithm to achieve AC. In
Section 5 we discuss the complexity of the hospital/resident problem with forced
and forbidden pairs. Finally, we present the experimental results in Section 6.

2 Definitions and Related work

2.1 Constraint Programming

Let X be a set of integer variables. A domain for X , denoted by D, is a mapping
from variables to finite sets of integers. For each variable x, we call D(x) the
domain of the variable x. We use min(x) to denote the minimum value in D(x)
and max(x) to denote the maximum value in D(x). Let [x1, . . . , xk] be a sequence
of integer variables. A constraint C defined over [x1, . . . , xk] is a finite subset
of Zk. The sequence [x1, . . . , xk] is the scope of C (denoted by X (C)) and k is
called the arity of C. A support for C in a domain D is a k-tuple τ such that
τ ∈ C and τ [i] ∈ D(xi) for all i ∈ [1, . . . , k]. The constraint C is Arc-Consistent
(AC) in D iff ∀i ∈ [1, . . . , k], ∀j ∈ D(xi), there exists a support τ for C in D
such that τ [i] = j. C is Bound (D) Consistent (BC(D)) in D iff ∀i ∈ [1, . . . , k],
there exists two supports τ1 and τ2 for C in D such that τ1[i] = min(xi) and
τ2[i] = max(xi) [1].

2.2 The Hospital/Resident Problem

Given a sequence S of distinct elements and j ∈ S, we denote by S−1[j] the
index i such that S[i] = j. We define a complete order ≺≺

S
on S as follows:

∀k, l ∈ S, k ≺≺
S

l iff S−1[k] < S−1[l]. We will also use the notation l ��
S

k

when k ≺≺
S

l. In the context of preferences, k ≺≺
S

l (respectively k ��
S

l) can

be understood as k is better (respectively worse) than l with respect to S.
In the Hospital/Resident (HR) problem (called College Admissions in [3]),

we are seeking the assignment of residents r1, . . . , rnR
to hospitals h1, . . . , hnH

.
Each hospital hj has a capacity cj as the maximum number of assigned residents.
Each resident ri has a sequence of integersRi ranking some hospitals in a strictly

increasing order of preferences. That is, ri prefers hospital hk to hospital hl iff
k ≺≺
Ri

l. Conversely, each hospital hj is associated with a sequence of integers

Hj ranking some residents in a strictly increasing order. We denote by lenri the
length of Ri and lenhj the length of Hi.

Let E = {(i, j) | i ∈ [1, nR]∧j ∈ [1, nH]∧i ∈ Hj∧j ∈ Ri} the set of acceptable
pairs. A matching M is a subset of E where |{j | (i, j) ∈ M}| ≤ 1 ∀i ∈ [1, nR]
and |{i | (i, j) ∈ M}| ≤ cj , ∀j ∈ [1, nH]. A resident ri is said to be unassigned
inM iff |{j | (i, j) ∈M}| = 0. Similarly, a hospital hj is under-subscribed inM
iff |{i | (i, j) ∈ M}| < cj . A pair (i, j) ∈ E \M is said to be blocking M iff the
following two conditions are true:

1. ri is unassigned in M or ∃k ∈ [1, nH] such that (i, k) ∈M and j ≺≺
Ri

k

2. hj is under-subscribed in M or ∃l ∈ [1, nR] such that (l, j) ∈M and i ≺≺
Hj

l

A matching M is said to be stable iff there is no blocking pair for M.
The Hospital/Resident (HR) problem is to find a stable matching for a given

instance. The stable marriage problem (SM) is a particular case of HR where
cj = 1 for all j ∈ [1, nH]. We assume, without loss of generality in the remainder
of the paper, that a resident r has a hospital h in its preference list iff h has r in its
preference list. In this case, the length of the preference lists L =

∑nR

i=1 len
r
i =∑nH

j=1 len
r
j .

Gale and Shapley proposed an O(L) algorithm for solving the HR prob-
lem [3]. The algorithm, known as the resident-oriented Gale/Shapley algorithm
(RGS) returns the unique matching where each resident is assigned to the best
possible hospital that it can be assigned to in any stable matching. A similar
algorithm for hospitals (i.e. hospital-oriented Gale/Shapley algorithm (HGS))
exists and has the same complexity O(L). RGS and HGS operate by removing
residents/hospitals from preference lists. The intersection of the reduced lists
(returned by RGS and HGS) is called the GS-lists. The GS-lists are important
since every stable matching is included in it [5].

Theorem 1. From [5]

1. The number of assigned residents per hospital is the same in all stable match-
ings

2. If a resident ri is unassigned in one stable matching then it is unassigned in
all stable matchings.

3. If a hospital hj is under-subscribed in one stable matching then it is assigned
exactly the same residents in all stable matching

We will use the following notation:

– HUnder = {j| hj is under-subscribed in all stable matchings}.
– HUnder j = {i|ri is assigned to hj in all stable matchings} where j ∈ HUnder
– HFull = [1, nH] \HUnder .
– RUnassigned = {i| ri is unassigned in all stable matchings}.
– RFree = {i| ri /∈ RUnassigned and {j|i ∈ HUnder j} = ∅}.

2.3 Related Work in Constraint Programming

We first describe one of the CP models for the HR problem proposed in [7]. Each
resident ri is associated with an integer variable xi where D(xi) = [1, .., lenri]∪
{nH + 1}. Each hospital hj is associated with cj + 1 integer variables yj,k (k ∈
[0..cj]) where D(yj,0) = 0 and D(yj,k) = [k, lenhj] ∪ {n + k}. Assigning xi to
nH + 1 is understood as the resident ri being unassigned. Assigning xi to a
value a ∈ [1, lenr

i] is semantically equivalent to assigning ri to its ath favourite
hospital. Similarly, assigning yj,k to a value b ∈ [1, lenh

j] means that the bth
favourite resident to hj is assigned to the kth position of hj . If yj,k is assigned
to {n+ k} then the kth position for hospital hj is not assigned to any resident.
These variables are subject to the following constraints (in these constraints pi,j
denotes the rank of hospital hj in Ri and qi,j denotes the rank of the resident
ri in Hj):

yj,k < yj,k+1 (∀j ∈ [1, nH],∀k ∈ [1, cj − 1]) (1)

yj,k ≥ qi,j =⇒ xi ≤ pi,j (∀j ∈ [1, nH],∀k ∈ [1, cj],∀i ∈ Hj) (2)

xi 6= pi,j =⇒ yj,k 6= qi,j (∀i ∈ [1, nR],∀j ∈ Ri,∀k ∈ [1, cj]) (3)

(xi ≥ pi,j∧yj,k−1 < qi,j) =⇒ yj,k ≤ qi,j (∀i ∈ [1, nR],∀j ∈ Ri,∀k ∈ [1, cj]) (4)

yj,cj < qi,j =⇒ xi 6= pi,j (∀j ∈ [1, nH],∀i ∈ Hj) (5)

We refer to this encoding as Γ . Enforcing AC on Γ yields to a domain that
is equivalent to the GS-lists [7]. This property is important, however, it does not
necessarily rule out all inconsistent values. The authors of [7] showed an effi-
cient implementation of this encoding using one constraint. Their filtering runs
in O(c × L) (where c = max{cj |j ∈ [1, nH]}) and does not further prune the
domains. In fact, in terms of the level of propagation, all previous work in the
literature including SM [4, 9, 7, 10] focus on showing how their encodings main-
tains the GS-lists and never investigate the question of completing the filtering.

Note also that the notion of GS-lists is not well-defined during search. That
is, for instance, when few residents are assigned/unassigned to some specific
hospitals at a given node of the search tree.

3 Characterizing the Level of Consistency

We show in this section that the previous CP models are not complete and
enforce only BC(D).

Example 1 (Counter-example). Consider the case where nR = nH = 4, c1 = c2 =
c3 = c4 = 1,R1 = [3, 2, 1],R2 = [4, 1, 3, 2],R3 = [2, 4, 3],R4 = [1, 3, 4],H1 =
[1, 2, 4],H2 = [2, 1, 3],H3 = [3, 2, 4, 1],H4 = [4, 3, 2]. The domain is initialised as
follows: D(x1) = D(x3) = D(x4) = {1, 2, 3, 5},D(x2) = {1, 2, 3, 4, 5},D(y1,0) =
D(y2,0) = D(y3,0) = D(y4,0) = 0,D(y1,1) = D(y2,1) = D(y4,1) = {1, 2, 3, 5},
and D(y3,1) = {1, 2, 3, 4, 5}. Constraint 2 with y1,1 >= 1 enforces x1 ≤ 3,

hence removing the value 5 from D(x1). A similar propagation is performed on
Constraint 2 with y2,1 ≥ 1, y3,1 ≥ 1, and y4,1 ≥ 1 and the value 5 is removed from
D(x2),D(x3), and D(x4). Now consider Constraint 4 with x1 ≥ 1 ∧ y3,0 < 4.
This enforces y3,1 ≤ 4. The same constraint is triggered with x2 ≥ 1 ∧ y4,0 < 3,
x3 ≥ 1 ∧ y2,0 < 3, and x4 ≥ 1 ∧ y1,0 < 3. Therefore the value 5 is removed from
D(y1,1),D(y2,1),D(y3,1), and D(y4,1). No more propagation is needed. However,
assigning x2 to 3 does not belong to any solution. �

Example 1 shows that AC on Γ is not sufficient to provide complete filtering.
Note that since all capacities cj = 1 this example confirms the property even for
the particular case of stable matching.

In the rest of the paper we use 2-SidedStability(X ,A,B, C) to denote
the global constraint modelling 2-sided stability. More precisely, for a given HR
problem:

– X is the set of variables x1, . . . , xnR
defined the same way in Γ ,

– A = {R1, . . . ,RnR
}

– B = {H1, . . . ,HnH
}

– C = {c1, . . . , cnH
}

We show that AC on Γ enforces BC(D) on any domain D.

Lemma 1. If Γ is AC then

1. ∀i ∈ RUnassigned, D(xi) = {nH + 1}.
2. ∀j ∈ HUnder, ∀i ∈ HUnder j, D(xi) = {k} such that k = Ri

−1[j].
3. ∀j ∈ HUnder, ∀k ∈ [1, |HUnder j |], D(yj,k) = {ak} such that ak is the kth

favourite resident to hj whose index is in HUnder j.
4. ∀j ∈ HUnder, ∀k > |HUnder j |, D(yj,k) = {n+ k}.
5. ∀j ∈ HFull , ∀i ∈ [1, nR], if ∃k ∈ D(xi), such that j = Ri[k], then i ∈ RFree.
6. ∀i ∈ RFree, ∀j ∈ [1, nH] if ∃k ∈ D(xi), such that j = Ri[k], then j ∈ HFull .
7. |RFree| =

∑
j∈HFull cj.

Proof. The lemma is a direct consequence of Theorem 1 and the fact that AC
on the initial domain is a superset of any domain returned by AC in the search
tree. Recall that AC on the initial domain is equivalent to the GS-lists. �

Lemma 2. If Γ is AC then for all i ∈ [1, nR], 1 ≤ k < max(xi), and h = Ri[k],
we have h ∈ HFull .

Proof. Consider the domain D∗ obtained after enforcing AC on the initial do-
main. We know that this domain corresponds to the GS-lists. Therefore, assign-
ing all variables to their maximum in D∗ is a support (i.e. the hospital-oriented
stable matching). Hence for all 1 ≤ k < max(D∗(xi)), and h = Ri[k], h ∈ HFull
(from the definition of stability). Therefore, if Γ is AC on any arbitrary domain,
then we know that max(xi) ≤ m, and consequently for all 1 ≤ k < max(xi), and
h = Ri[k], we have h ∈ HFull . �

Lemma 3. If Γ is AC then ∀j ∈ HFull , |{i | Ri[min(xi)] == j}| = cj.

Proof. Let Φj = {i | Ri[min(xi)] == j}. We first show that |Φj | ≤ cj . Suppose
by contradiction that ∃j ∈ HFull , |Φj | > cj . For all k ∈ [1, |Φj |], we define rak

to be the kth favourite resident to hj whose index is in Φj (i.e. ak ∈ Φj).
We show by induction that ∀k ∈ [1, cj],max(yj,k) ≤ Hj

−1[xak
]. For k = 1,

since Constraint 4 of Γ is AC, and yj,0 = 0 < Hj
−1[xa1

] then max(yj,1) ≤
Hj
−1[xa1

]. Suppose that the property holds for k ∈ [1, cj−1]. We have max(yj,k) ≤
Hj
−1[xak

]. Therefore, Constraint 4 of Γ enforces max(yj,k+1) ≤ Hj
−1[xak+1

]

since Hj
−1[xak

] < Hj
−1[xak+1

].

Consider now k ∈ [cj + 1, |Φj |]. We have max(yj,cj) < Hj
−1[xak

] (since

Hj
−1[xacj

] < Hj
−1[xak

]). Therefore Constraint 5 of Γ removes Rak

−1[j] from

D(xak
) which contradicts the fact that Rak

[min(xak
)] = j. Hence |Φj | ≤ cj .

Using Properties 5, 6, and 7 of Lemma 1 we obtain∑
j∈HFull

|Φj | =
∑

j∈HFull

cj .

Therefore, |Φj | = cj . �

Lemma 4. If Γ is AC then ∀j ∈ HFull , |{i | Ri[max(xi)] == j}| = cj.

Proof. We show first that ∀j ∈ HFull , ∀k ∈ [1, cj], if Hj [min(yj,k)] = i, then
Ri[max(xi)] = j. Suppose by contradiction that there exists j, k, i such that
Hj [min(yj,k)] = i and Ri[max(xi)] 6= j. Then Constraint 2 enforces max(xi) ≤
Ri
−1[j]. Therefore we have max(xi) < Ri

−1[j]. Thus, Constraint 3 removes
Hj
−1[i] from D(yj,k) which contradicts the hypothesis. Hence we have ∀j ∈

HFull , ∀k ∈ [1, cj], if Hj [min(yj,k)] = i, then Ri[max(xi)] = j.
Observe that propagating Constraint 1 enforces min(yj,1), min(yj,2), . . . ,

min(yj,cj) to have different values. Therefore ∀j ∈ HFull ,|{min(yj,k) | k ∈
[1, cj]}| = cj . Thus |{i | Ri[max(xi)] == j}| ≥ cj .

Since Ri[max(xi)] == j is true only when i ∈ RFree, and for all i ∈ RFree,
Ri[max(xi)] ∈ HFull then

∑
j∈HFull |{i | Ri[max(xi)] == j}| = |RFree| =∑

j∈HFull cj . Therefore, ∀j ∈ HFull , |{i | Ri[max(xi)] == j}| = cj . �

We now introduce a sufficient and necessary condition for stability in Theorem 2.

Theorem 2. 2-SidedStability(X ,A,B, C) is satisfiable iff

∀ 1 ≤ j ≤ nH ,
nR∑
i=1

(Ri[xi] == j) ≤ cj ∧

∀ 1 ≤ i ≤ nR, ∀ 1 ≤ j ≤ nH + 1, xi = j =⇒ ∀k ∈ [1, j[, if h = Ri[k], then∑nR

m=1(Rm[xm] == h) = ch ∧ ∀l ��
Hh

i, Rl[xl] 6= h.

Proof. (⇒) Let M be a stable matching and suppose that the variables are
assigned accordingly. Clearly, by construction, ∀ 1 ≤ j ≤ nH ,

∑nR

i=1(Ri[xi] ==
j) ≤ cj . Let xi be assigned to j, 1 ≤ k < j, and h = Ri[k]. We show that∑nR

m=1(Rm[xm] == h) = ch ∧ ∀l ��
Hh

i,Rl[xl] 6= h.

If we suppose by contradiction that
∑nR

m=1(Rm[xm] == h) 6= ch ∨ ∃l ��
Hh

i,Rl[xl] = h, then, Hh is under subscribed or ∃(l, h) ∈M and i ≺≺
Hh

l. Therefore,

(i, h) is blocking M. Hence the contradiction.
(⇐) Consider an assignment of the the variables x1, .., xn satisfying the property.
We show that the corresponding matching M is stable. If M is not stable then
there exists a blocking pair (a, b). There are two cases to consider:

– ra is unassigned in M: In this case xa = nH + 1, hence
∀h ∈ [1, nH],

∑l=nR

l=1 (Rl[xl] == h) = ch ∧ ∀l ��
Hh

a,Rl[xl] 6= h. Therefore

hb cannot be under-subscribed and there does not exist l ∈ [1, nR] such that
(l, b) ∈M and a ≺≺

Hb

l.

– ∃k ∈ [1, nH] such that (a, k) ∈ M and b ≺≺
Ra

k: In this case xa = e where

e = Ra
−1[k], hence for all w ≺≺

Ha

k,
∑nR

m=1(Rm[xm] == w) = cw ∧ ∀l ��
Hw

a,Rl[xl] 6= w. Since b ≺≺
Ra

k, then hb cannot be under-subscribed and there

does not exist l ∈ [1, nR] such that (l, b) ∈M and a ≺≺
Hb

l.

Therefore M is stable. �

Lemma 5. If Γ is AC then assigning all variables to their minimum value is
solution.

Proof. We use Theorem 2 to prove that assigning all variables to their minimum
satisfies the constraint. We already know that ∀j ∈ [1, nH], |{i | Ri[min(xi)] ==
j}| ≤ cj by Lemma 1 and Lemma 3. Let 1 ≤ i ≤ nR, j = min(xi), k ∈ [1, j[, h =
Ri[k]. We show that

∑nR

m=1(Rm[min(xm)] == h) = ch ∧ ∀l ��
Hh

i,Rl[min(xl)] 6=

h. Note first that h ∈ HFull (Lemma 2). Therefore, by using Lemma 3 we obtain∑nR

m=1(Rm[min(xm)] == h) = ch. Recall that min(xi) > Ri
−1[h]. Therefore,

Constraint 2 of Γ enforces max(yh,k) < Hh
−1[i] for all k ∈ [1, ch]. Thus, Con-

straint 5 removes Rl
−1[h] from D(xl) for all l ��

Hh

i. �

Lemma 6. If Γ is AC then assigning all variables to their maximum value is
solution.

Proof. Here again we use Theorem 2 to prove the result. First observe that ∀j ∈
[1, nH], |{i | Ri[max(xi)] == j}| ≤ cj by Lemma 1 and Lemma 4. Let 1 ≤ i ≤
nR, j = max(xi), k < j, and h = Ri[k], we show that

∑nR

m=1(Rm[max(xm)] ==
h) = ch ∧ ∀l ��

Hh

i,Rl[max(xl)] 6= h. Observe first that h ∈ HFull (Lemma 2).

Therefore, by using Lemma 4 we have
∑nR

m=1(Rm[max(xm)] == h) = ch. Next,
we show that for any l such that Rl[max(xl)] = h, then ∃k ∈ [1, ch] such that
min(yh,k) = Hh

−1[l]. In fact, if it’s not the case, then by the proof of Lemma 4,
we know that if min(yh,k) = Hh

−1[a] (for any a ∈ [1, nR]), thenRa[max(xa)] = h
and in this case we have

∑nR

m=1(Rm[max(xm)] == h) > ch which contradicts
Lemma 4 because h ∈ HFull .

Suppose now by contradiction that ∃l ��
Hh

i,Rl[max(xl)] = h and consider

k such that Hh
−1[min(yh,k)] = l. Since l ��

Hh

i then min(yh,k) ≥ Hh
−1[i].

Therefore, Constraint 2 enforces max(xi) ≤ Ri
−1[h] which is false since h ≺≺

Ri

Ri[max(xi)]. Therefore we have ∀l ��
Hh

i,Rl[max(xl)] 6= h. �

The following Theorem is an immediate consequence of Lemma 5 and Lemma 6.

Theorem 3. Enforcing AC on Γ makes 2-SidedStability(X ,A,B, C) Bound(D)
consistent.

4 Revisiting Bound(D) Consistency

We assume that a preprocessing step is performed where the GS-lists are com-
puted and that the domain is updated accordingly. We suppose without loss of
generality that ∃n ∈ [1, nR] such that ∀i ∈ [1, n], i ∈ RFree and |RFree| = n.
Note that ∀i > n, |D(xi)| = 1 after the preprocessing step. Therefore, we shall
assume that this holds for the rest of the section and we will focus only on
[x1, . . . , xn]. We show that BC(D) on 2-SidedStability(X ,A,B, C) can be im-
plemented with O(L) time complexity down a branch of the search tree which
improves the previous complexity O(c × L) (where c = max{cj |j ∈ [1, nH]}).
Next we show an adaptation of the filtering to achieve AC on this constraint.

4.1 Bound(D) Consistency

Our revision of BC(D) for this constraint is based essentially on Theorem 4.

Theorem 4. 2-SidedStability(X ,A,B, C) is BC(D) iff assigning every vari-
able to its maximum is a solution and assigning every variable to its minimum
is a solution.

Proof. (⇒) Let D be a domain where 2-SidedStability(X ,A,B, C) is BC(D).
Consider the encoding Γ on a domain D∗ where D∗(xi) = D(xi) for all xi ∈ X
and D∗(yj,k) equals to the initial domain detailed in Section 2.3 for all j ∈ [1, nH]
and k ∈ [0, cj]. Let D′ be the domain obtained after enforcing AC on Γ . We
know that D′ cannot be empty (i.e., failure) since otherwise it will contradict
the fact that 2-SidedStability(X ,A,B, C) is BC(D). Moreover, no lower/upper
bound can change after AC on Γ since every lower/upper bound has a support.
Therefore, by using Lemmas 5 and 6, we know that assigning every variable to
its minimum (respectively maximum) is a solution.

(⇐) Straightforward. �

Theorem 4 shows that in order to maintain BC(D), it is sufficient to make
sure that two specific solutions exist: one by assigning all variables to their
minimum, and the other to their maximum. In the following, we show that one
can maintain this property in O(L) time down a branch of the search tree using
an incremental algorithm.

Given a domain D, we define for each hospital h in HFull the following:

Algorithm 1: BC(D)

1 while ∃ < i, j >∈ Newlb do
UpdateLB(i, j,min(xi)− 1, Newlb) ;
Apply(i,Newlb) ;

2 while ∃ < i, j >∈ Newub do
UpdateUB(i, j,Newub) ;

– MINh = {k | RHh[k][min(xHh[k])] = h}
– MAXh = {k | RHh[k][max(xHh[k])] = h}
– maxofMAXh = max{l | l ∈MAXh}.

For any k ∈ MINh (respectively k ∈ MAXh), if r is the correspondent
resident (i.e., r = Hh[k]), then h is the hospital of index min(xr) (respectively
max(xr)) in Rr.

We also define lastLefth for every hospital h ∈ HFull as follows: lastLefth =
max{k | k ∈ [1, lenh

h]∧RHh[k]
−1[h] ∈ D(xHh[k])}. That is lastLefth is the last

index in the list of Hh where the corresponding resident still has the rank of h
in its domain.

We suppose that MINh, MAXh, maxofMAXh, and lastLefth are imple-
mented as “reversible” data structures (i.e. their values are restored whenever
the solver backtracks).

Let DBC(D) be a domain that is BC(D) for 2-SidedStability(X ,A,B, C).
Let Newlb (respectively Newub) be a set of pairs such that < i, j >∈ Newlb

(respectively < i, j >∈ Newub) iff the lower (respectively upper) bound j has
been removed from DBC(D)(xi). We show that Algorithm 1 maintains BC(D).

Take the case where only one variable xi has a new lower bound min(xi)
and j was the previous lower bound. To maintain BC(D), we need to compute
the new domain where assigning all variables to their minimum/maximum value
is a solution. We therefore need to maintain ∀ 1 ≤ j ≤ nH ,

∑nR

i=1(Ri[xi] ==
j) ≤ cj , and ∀a ∈ [1, n],∀h ≺≺

Ra

Ra[min(xa)], ∀l ��
Hh

a,Rl[min(xl)] 6= h. In other

words, ∀a ∈ [1, n],∀v < min(xa),∀k > idx,min(xr) 6= Rr
−1[h] where h = Ri[v],

idx = Hh
−1[i], and r = Hh[k].

Consider first the variable xi. Since DBC(D) is BC(D), then the property
already holds for all v < j. Let [a, b] = [j,min(xi) − 1]. The property must be
enforced for all v ∈ [a, b]. This is precisely what Algorithm 2 does. Let h← Ri[v].
Observe that ∀k > lastLefth, if r = Hh[k] then Rr

−1[h] /∈ D(xr) (from the
definition of lastLefth). Therefore, one needs only to enforce the property for
k ∈ [idx, lastLefth] (Line 1) where idx = Hh

−1[i] and perform the filtering
in Line 5. Note that this value removal might change the lower (respectively
upper) bound for a given xr. In this case, the pair 〈r,min(xr)〉 (respectively
〈r,max(xr)〉) is added to Newlb (respectively Newub) in Line 3 (respectively
Line 4). The case where k ∈ MINh is handled at Line 2 by removing k from
MINh.

Algorithm 2: UpdateLB(i, a, b,Newlb)

for v ∈ [a, b] do
h←Ri[v] ;
idx← Hh

−1[i] ;
1 for k ∈ [idx, lastLefth] do

r ← Hh[k] ;
if k ∈MINh then

2 MINh ←MINh \ {k} ;

if Rr
−1[h] == min(xr) then

3 Newlb ← Newlb ∪ {〈r,min(xr)〉} ;

if Rr
−1[h] == max(xr) then

4 Newub ← Newub ∪ {〈r,max(xr)〉} ;

5 D(xr)← D(xr) \ {Rr
−1[h]} ;

if lastLefth > idx− 1 then
6 lastLefth ← idx− 1 ;

Now once the call to UpdateLB(i, j,min(xi) − 1, Newlb) ends, we have to
make sure that it is actually possible to assign xi to its new minimum. This
is performed by calling Algorithm 3 Apply(i,Newlb). More precisely, let h =
Ri[min(xi)]. Obviously if Hh

−1[i] > lastLefth then xi cannot be assigned to
its minimum (Lines 9 and 10). Otherwise, Hh

−1[i] is added to MINh (Line 1).
Suppose now that MINh has more than ch elements. We can easily show that
this happens only if |MINh| = ch + 1. In this case, we can see that the resident
associated with the maximum index in MINh cannot be assigned to hospital
h anymore. The maximum is computed by looking for the first index less than
or equal to MINh (Line 3). Lines 4, 5, 6, 7, and 8 handle the fact that the
corresponding resident cannot be assigned to hospital h.

At the end of the first loop in Algorithm 1, we may argue that |MINh| = ch.
Therefore ∀ 1 ≤ j ≤ nH ,

∑nR

i=1(Ri[xi] == j) ≤ cj , and ∀a ∈ [1, n],∀h ≺≺
Ra

Ra[min(xa)], ∀l ��
Hh

a,Rl[min(xl)] 6= h. Thus assigning all variable to their

minimum is a solution.
Consider now the case where only one variable xi has a new upper bound

max(xi) and j was the previous upper bound. We use the following lemma to to
compute the new domain.

Lemma 7. Assigning all variables to their maximum is a solution iff ∀ h ∈
HFull , |MAXh| = ch, and ∀ i ≤ maxofMAXh, let r = Hh[i], and l = Rr

−1[h],
then i /∈MAXh =⇒ max(xr) < l.

Proof. (⇒) LetM be the matching where each resident is assigned to the hospital
corresponding to the maximum value in its domain. Let h ∈ HFull . We know
that |MAXh| = ch since M is stable. Consider now i ≤ maxofMAXh, such
that i /∈MAXh. Let r = Hh[i], and l = Rr

−1[h]. Observe first that max(xr) 6= l

Algorithm 3: Apply(i,Newlb)

j ← min(xi) ;
h←Ri[j] ;
if Hh

−1[i] ≤ lastLefth then
1 MINh ←MINh ∪ {Hh

−1[i]} ;
if |MINh| = ch + 1 then

2 max← lastLefth ;
max found = false ;

3 while not(max found) do
if max ∈MINh then

max found = true ;

else
max← max− 1

4 MINh ←MINh \ {max} ;
5 l = Hh[max] ;
6 D(xl)← D(xl) \ {Hl

−1[h]} ;
7 Newlb ← Newlb ∪ {〈l,min(xl)〉} ;
8 lastLefth ← max

else
9 D(xi)← D(xi) \ {min(xi)} ;

10 Newlb ← Newlb ∪ 〈i,min(xi)〉 ;

(otherwise i ∈MAXh). Next, one can easily show that if max(xr) > l then the
pair (r, h) blocks M . Therefore, max(xr) < l.

(⇐) We use Theorem 2 to show that assigning all variables to their maximum is
a solution. We already have ∀ 1 ≤ j ≤ nH ,

∑nR

i=1(Ri[max(xi)] == j) ≤ cj . We
show that ∀ 1 ≤ i ≤ nR, ∀ 1 ≤ j ≤ nH + 1,max(xi) = j =⇒ ∀k ∈ [1, j[, if h =
Ri[k], then

∑nR

m=1(Rm[max(xm)] == h) = ch ∧ ∀l ��
Hh

i,Rl[max(xl)] 6= h. Note

first that the property is true for all i ∈ [n+1, nR]. Let i ∈ [1, n] j = max(xi), and
h ≺≺
Ri

Ri[j] (note that j 6= nH + 1). We have necessarily h ∈ HFull (Lemma 2),

and therefore
∑nR

m=1(Rm[max(xm)] == h) = ch since |MAXh| = ch. Let l ��
Hh

i.

We show that Rl[max(xl)] 6= h. Suppose by contradiction that Rl[max(xl)] =
h, and let m = Hh

−1[l]. We have m ∈ MAXh, hence m ≤ max{MAXh}.
Therefore, Hh

−1[i] < max{MAXh} because l ��
Hh

i. Since Hh
−1[i] /∈ MAXh,

then max(xi) < Ri
−1[h] which contradicts the hypothesis that h ≺≺

Ri

Ri[j]. �

We maintain the property in Lemma 7 by calling Algorithm 4,
UpdateUB(i, j,Newub). Recall that, in this case, the current upper bound of
xi is strictly less than j.

Let h = Ri[j] and idx = Hh
−1[i]. There are two cases to consider. First if

idx ∈ MAXh, we know that MAXh has to be of cardinality ch. Therefore, a
new index needs to be added to MAXh. From Lemma 7 we can argue that the

Algorithm 4: UpdateUB(i, j,Newub)

h←Ri[j] ;
idx← Hh

−1[i] ;
if idx ∈MAXh then

1 MAXh ←MAXh \ {idx} ;
new resident← false ;
max = maxofMAXh ;

2 do
max← max + 1 ;
r ← Hh[max] ;
if Rr

−1[h] ≤ max(xr) then
new resident← true ;

while not new resident;
3 MAXh ←MAXh ∪ {max} ;
4 maxofMAXh ← max ;

rankOfh = Rr
−1[h] ;

if rankOfh < max(xr) then
5 Newub ← Newub ∪ {〈r,max(xr)〉} ;

% make a new upper bound for xr ;
6 D(xr)← D(xr) ∩]−∞, rankOfh] ;

else
if j − 1 > max(xi) then

Newub ← Newub ∪ {〈i, j − 1〉} ;

new index cannot correspond to a value less than or equal to maxofMAXh.
Therefore, we start looking for a new index in the main loop (Line 2) starting
from maxofMAXh + 1. The loop ends when we find a replacement for ri. The
new index corresponds to a resident r such that Rr

−1[h] ≤ max(xr). The set
MAXh is updated accordingly in Lines 1 and 3. The upper bound of xr is
changed if h is better than the hospital corresponding to max(xr) (Line 6). In
this case, 〈r, h〉 is added to Newub in Line 5.

Second, in the case where idx /∈ MAXh, we just need to make sure that if
j − 1 is not the current upper bound of max(xi), then we need to simulate the
case where j − 1 was an upper bound for xr and has been removed.

To maintain BC(D) in Algorithm 1, we loop over all the lower/upper bound
changes and call the appropriate algorithms. The new domain is BC(D) as an
immediate consequence of Theorems 4, and 2, and Lemma 7.

Complexity. We discuss now the complexity of this incremental algorithm. We
assume that all set operations are implemented in constant time.

Observe that down a branch of the search tree the value of lastLefth can
always decrement (Line 6 in Algorithm 2 and Line 8 in Algorithm 3). Now
consider one iteration of the main loop in Algorithm 2. The number of operations
is bounded by O(|idx−lastLefth|). Similarly, one call to Algorithm 3 is bounded

by O(|m −m′|) where m (respectively m′) is the value of lastLefth at Line 2
(respectively 8). Since lastLefth can only decrement, then the time complexity
of all lower bound operations down a branch is O(lenhh) for any hospital h.
Therefore the complexity for lower bound operations is O(L).

Consider now upper bound operations. Each call to Algorithm 4 is bounded
by O(|m′ − m|) where m and m′ are the values of maxofMAXh at Lines 1
and 4 respectively. And since maxofMAXh can only increment down a branch
of the search tree, then the number of upper bound operations for any hospital
h is O(lenhh). Therefore the total upper bound operations is O(L). Hence the
complexity of enforcing BC(D) is O(L) down a branch of the search tree.

4.2 Arc Consistency

Assume that 2-SidedStability(X ,A,B, C) is BC(D). We use a straightforward
way to enforce AC based on the BC(D) propagator. For every variable xi, we
remove its upper bound u then we enforce BC(D). Let u′ the new upper bound
for xi. Clearly any value v ∈]u′, u[cannot be part of any support, hence should
be removed from D(xi). Moreover, the new upper bound u′ has a support on the
constraint because BC(D) is maintained. By repeating the process until reaching
the lower bound of xi, we are guaranteed that all values without a support in
D(xi) are removed. Therefore AC is maintained by using this procedure for every
variable xi. The overall complexity is O(n × L) since for each variable it takes
O(L) to enforce BC(D) from max(xi) to min(xi). Note that the algorithm is not
incremental and the cost of O(n× L) is for each call to the propagator.

5 On the Complexity of the Hospital/Resident Problem
with Forced and Forbidden Pairs

The variant of the Hospital/Resident problem with forced and forbidden pairs
(HRFF) seeks to find a stable matching that includes or excludes, respectively,
a number of pairs 〈r, h〉 (r denotes a resident and h denotes a hospital). To the
best of our knowledge no polynomial algorithm exists in the literature to solve
this problem; this observation is also true even if there is no forced pairs [7]. We
show that the problem is indeed polynomial and can be solved in O(L) time.

Recall that Theorem 4 states that once Bound(D) consistency is established,
then assigning every variable to its maximum is a solution and assigning ev-
ery variable to its minimum is a solution. Therefore, it is sufficient to enforce
Bound(D) consistency on the problem and then take the minimum value in the
domain of each variable as the assignment of the correspondent resident. Since
BC(D) takes O(L) time, then the complexity of solving HRFF is O(L).

Consider now the particular case of stable marriage with forced and forbidden
pairs. There exist a number of polynomial algorithms for solving this problem.
The best algorithm for solving this problem runs in O(n4) time ([2] and Section
2.10.1 in [8]) where n is number of men/women. Now since this problem is a
particular case of HRFF, then the complexity for solving it using the above

Table 1. Summary of the Experimental Results

Set
BC(D)-min AC-min BC(D)-max

Time Nodes Opt Time Nodes Opt Time Nodes Opt

2k 2 16.56 100 19 13.33 100 8 256.38 100
4k 5 18.14 100 151 14.69 100 37 394.86 100
6k 9 18.08 100 393 14.89 93 86 648.82 100
8k 19 18.16 100 332 15.80 79 131 491.50 100

AC-max BC(D)-rand AC-rand
Time Nodes Opt Time Nodes Opt Time Nodes Opt

2k 28 204.53 100 4 67.36 100 12 81.91 100
4k 202 320.33 100 12 81.91 100 160 65.61 100
6k 564 535.65 85 25 120.58 100 502 99.20 92
8k 530 432.87 69 42 98.88 100 475 88.11 77

approach is also O(L). Recall that in the case of stable marriage L is bounded
by n2, therefore the worst case complexity is O(n2), hence it is optimal.

6 Experimental Results

We consider a variant of the HR problem where some couples can express their
desire to be matched together, assuming that they have the same preference
lists. The problem is to find a stable matching maximizing the number of such
couples who are matched together.

We generated a set of random instances as follows. Each instance is de-
scribed by a tuple 〈r, h, c〉 where: r ∈ {2000, 4000, 6000, 8000} is the num-
ber of residents; h ∈ {100, 200, 300, 400, 500} is the number of hospitals; and
c ∈ {100 + 50 ∗ k | k ∈ [0, 8]} is the number of couples. We implemented the
AC and BC(D) propagators in Mistral-2.0 [6]. We use Intel Xeon E5-2640 pro-
cessors for the experiments running on Linux. The variable ordering is fixed to
be lexicographical for all experiments. As for the value ordering, we use three
different branching strategies: minimum value (static); maximum value (static);
and random min/max. We also use a geometric restart. Note that for random
min/max, we use five different seeds since the heuristic is randomized. The time
limit is fixed to 20 minutes for each instance and configuration.

The results are shown in Table 1 and Figure 1. The table is split into two
parts. In each part, each column depicts one configuration a-b where a is the
propagator (BC(D) or AC) and b is the value branching strategy. Each row rep-
resents the results for one set of instances by their size (i.e. number of residents).
We report for each configuration the runtime (Time) in second, the number of
nodes (Nodes), and the percentage of instances where optimality where proven
(Opt). All the statistics are given as averages across all successful runs (i.e. when
optimality is found). Bold faced values show the best results in terms of percent-

2,000 3,000 4,000 5,000 6,000 7,000 8,000

0

200

400

600

Nb. residents

R
u
n
ti

m
e(

s)

Runtime

BC(D) min

BC(D) max

BC(D) random

AC min

AC max

AC random

2,000 3,000 4,000 5,000 6,000 7,000 8,000

0

20

40

60

80

Nb. residents

N
o
d
es

/
s

Speed of exploration

BC(D) min

BC(D) max

BC(D) random

AC min

AC max

AC random

Fig. 1. Runtime and Speed of exploration

age of optimality. Figure 1 shows two plots corresponding to the runtime and
the speed of exploration in terms of nodes explored per second.

There are a number of observations based on Table 1 and Figure 1. First,
clearly the models enforcing BC(D) outperform the AC models in terms of op-
timality. For instance, in the 8k set, with min value branching, BC(D) finds the
optimal solution for all instances whereas the AC models finds optimality only
for 79% of the instances. Second, we observe that enforcing AC considerably
slows down the exploration of the search tree. For instance, with set 2k and
min value, BC(D) is 21 times faster at exploring the search space (see Figure 1).
This behaviour negatively affects the total runtime for AC. For instance, it takes
AC 150s to find optimal solutions for the 4k set with min value, whereas the
BC(D) models needs about 5s. Last, it should be noted that the search tree is
slightly different between the two models. AC does prune some additional nodes
as compared to BC(D), but the impact of the pruning does not pay off as it
consumes an enormous amount of time. This behaviour is mainly due to the
non-incrementality of the AC algorithm.

7 Conclusion

We addressed the filtering aspect of the 2-SidedStability constraint. We first
showed that the filtering level of all previous approaches is BC(D). Then, we
proposed an optimal BC(D) algorithm, as well as an AC algorithm for this
constraint. Our experiments showed that, in practice, BC(D) completely out-
performs AC on a variant of the HR problem involving couples. While the aim
of this paper was to revisit the current filtering approaches for two-sided stabil-
ity constraints, we found new theoretical results related to the complexity of the
variant of HR with forced and forbidden pairs. We showed, for the first time,
that this problem is polynomial and we improved the best known existing com-
plexity for the the particular case of stable marriage with forced and forbidden
pairs by a factor of n2.

References

1. Christian Bessiere. Constraint propagation. In Peter van Beek Francesca Rossi
and Toby Walsh, editors, Handbook of Constraint Programming, volume 2 of Foun-
dations of Artificial Intelligence, pages 29 – 83. Elsevier, 2006.

2. Vânia M. F. Dias, Guilherme Dias da Fonseca, Celina M. Herrera de Figueiredo,
and Jayme Luiz Szwarcfiter. The stable marriage problem with restricted pairs.
Theor. Comput. Sci., 306(1-3):391–405, 2003.

3. David Gale and Lloyd S Shapley. College admissions and the stability of marriage.
American mathematical monthly, pages 9–15, 1962.

4. Ian P. Gent, Robert W. Irving, David Manlove, Patrick Prosser, and Barbara M.
Smith. A constraint programming approach to the stable marriage problem. In
Proceedings of CP, pages 225–239, 2001.

5. Dan Gusfield and Robert W. Irving. The Stable marriage problem - structure and
algorithms. Foundations of computing series. MIT Press, 1989.

6. Emmanuel Hebrard. Mistral, a Constraint Satisfaction Library. In Proceedings of
the CP-08 Third International CSP Solvers Competition, pages 31–40, 2008.

7. David Manlove, Gregg O’Malley, Patrick Prosser, and Chris Unsworth. A con-
straint programming approach to the hospitals / residents problem. In Proceedings
of CPAIOR, pages 155–170, 2007.

8. David F. Manlove. Algorithmics of Matching Under Preferences, volume 2 of Series
on Theoretical Computer Science. WorldScientific, 2013.

9. Chris Unsworth and Patrick Prosser. A specialised binary constraint for the stable
marriage problem. In Abstraction, Reformulation and Approximation, 6th Inter-
national Symposium, SARA 2005, Airth Castle, Scotland, UK, July 26-29, 2005,
Proceedings, pages 218–233, 2005.

10. Chris Unsworth and Patrick Prosser. An n-ary constraint for the stable marriage
problem. CoRR, abs/1308.0183, 2013.

