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Context

• Matching under preferences & Constraint Programming?

• Few CP formulations exist in the literature for stable
matching

• Not much about local consistency levels

• Global constraints for stable matching problems?
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Matching Under Preferences

• They are everywhere!

• For instance, assigning students to universities/residents
to hospitals/ workers to firms . . .

• Bipartie structure with two sided preferences

• Bipartie structure with one sided preferences

• Non-bipartie structure
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Stable Marriage [Gale and Shapley, 1962]

• ♂, ♂, ♂, . . .
• ♀, ♀, ♀, . . .
• Two sided preferences
• A matchingM is stable when no blocking pair exists
• A pair (♂,♀) is blocking a matching M if ♂/♀ prefer each
other to their situation inM
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The Hospital/Resident Problem

• Many to one extension of SM

• Two sets of agents: residents r1, r2, . . . and hospitals
h1, h2, . . .

• Preferences without ties

• Each hospital hj has a capacity cj
• Notation: i better than j w.r.t. a list L: i ≺≺

L
j or j ��

L
i

• Find a stable matching?
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Previous CP Approaches

• Some global constraints exist in the
literature [Gent et al., 2001, Unsworth and Prosser, 2005,
Manlove et al., 2007, Unsworth and Prosser, 2013]

• They are all equivalent in terms filtering (even for SM)

• They all are equivalent to the GL-Lists

• What is the level of consistency?
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CP Model for Hospital/Resident Problem (Γ)

Variables

• xi : index of the hospital assigned to ri

• yj ,k : index of the resident assigned to the kth position in hj

Constraints

yj,k < yj,k+1 (∀j ∈ [1, nH ], ∀k ∈ [1, cj − 1]) (1)

yj,k ≥ qi,j =⇒ xi ≤ pi,j (∀j ∈ [1, nH ],∀k ∈ [1, cj ],∀i ∈ Hj ) (2)

xi 6= pi,j =⇒ yj,k 6= qi,j (∀i ∈ [1, nR ],∀j ∈ Ri , ∀k ∈ [1, cj ]) (3)

(xi ≥ pi,j ∧ yj,k−1 < qi,j ) =⇒ yj,k ≤ qi,j (∀i ∈ [1, nR ], ∀j ∈ Ri , ∀k ∈ [1, cj ]) (4)

yj,cj < qi,j =⇒ xi 6= pi,j (∀j ∈ [1, nH ], ∀i ∈ Hj ) (5)
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Example

R1 = [3, 2, 1] H1 = [1, 2, 4]
R2 = [4, 1, 3, 2] H2 = [2, 1, 3]
R3 = [2, 4, 3] H3 = [3, 2, 4, 1]
R4 = [1, 3, 4] H4 = [4, 3, 2]

Initial Domain

• D(x1) = D(x3) = D(x4) = {1, 2, 3, 5}
• D(x2) = {1, 2, 3, 4, 5}
• D(y1,0) = D(y2,0) = D(y3,0) = D(y4,0) = {0}
• D(y1,1) = D(y2,1) = D(y4,1) = {1, 2, 3, 5}
• D(y3,1) = {1, 2, 3, 4, 5}
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2-SidedStability(X ,A,B, C)

• X is the set of variables x1, . . . , xnR defined the same way
in Γ,

• A = {R1, . . . ,RnR}
• B = {H1, . . . ,HnH}
• C = {c1, . . . , cnH}

We show that AC on Γ enforces BC(D) on any domain D
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Local Consistency

Definitions

• A support of a constraint C in a domainD is an
assignment of the variables inD that satisfies C

• A constraint in arc consistent inD iff for every variable x
in the scope of C , every value inD(x) has a support inD

• A constraint in bound(D) consistent inD iff for every
variable x in the scope of C ,min(D(x)) andmax(D(x))
have a support inD

Bound(D) consistency is stronger than the classic bound
consistency property
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Arc Consistency using Γ?

• AC removes 5 fromD(x1),D(x2),D(x3),D(x4)

• AC removes 5 fromD(y1,1),D(y2,1),D(y3,1),D(y4,1)

• No more propagation

• Assigning 3 to x2 has no solution

• Γ hinders propagation!
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Theorem
[Gusfield and Irving, 1989]

• The number of assigned residents per hospital is the
same in all stable matchings

• If a resident ri is unassigned in one stable matching then
it is unassigned in all stable matchings.

• If a hospital hj is under-subscribed in one stable matching
then it is assigned exactly the same residents in all stable
matching
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Preprocessing

• Compute the GS_lists and prune the domain accordingly
(O(L))

• Notation: HFull the set of hospitals fully subscribed in any
stable matching
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Necessary and Sufficient Condition for Stability
Theorem
2-SidedStability(X ,A,B, C) is satisfiable iff

∀ 1 ≤ j ≤ nH ,

nR∑
i=1

(Ri [xi ] == j) ≤ cj ∧

∀ 1 ≤ i ≤ nR , ∀ 1 ≤ j ≤ nH + 1, xi = j =⇒

∀k ∈ [1, j [

ifh = Ri [k]then
nR∑

m=1

(Rm[xm] == h) = ch

∧

∀l ��
Hh

i , Rl [xl ] 6= h
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Lemma
If Γ is AC then assigning all variables to their minimum value is
solution.

Lemma
If Γ is AC then assigning all variables to their maximum value is
solution.

Theorem
Enforcing AC on Γ makes 2-SidedStability(X ,A,B, C) Bound(D)
consistent.
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Revisiting Bound(D) Consistency

• Best BC(D) algorithm runs in O(c × L)
[Manlove et al., 2007]

• We propose an optimal algorithm running in O(L)

Theorem
2-SidedStability(X ,A,B, C) is BC(D) iff assigning every variable
to its maximum is a solution and assigning every variable to its
minimum is a solution.
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Lower bound changes

• Assume we have a domain that is BC(D)

• Let ri be a resident whose lower bound has changed

• Let hj be the hospital corresponding to the new lower
bound
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Step 1

• Let h be any hospital ‘between’ the old and the new lower
bound

• Make sure that any resident worse (inHh) than ri cannot
be assigned to h

Hh r10 r3 r1 r7 r14 ri© r4 r6 r2 ��ZZr8 ��HHr11
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Step 2

Make sure that the new hospital hj has no more than cj
residents whose lower bound corresponds to hj .

• MINhj : The variables whose minimum corresponds to hj

• If |MINhj | = chj + 1: Remove the worst resident r from
MINhj and prune hj from the domain of r

Example
Hhj r2© r8 r7© r11 r9 r5© r6© r3© r1 r8 ��ZZr6 ��HHr12
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Upper bound changes

• MAXh : The indexes of residents where the maximum
corresponds to h

• maxofMAXh = max(MAXh)

Lemma
Assigning all variables to their maximum is a solution iff
∀ h ∈ HFull, |MAXh| = ch, and ∀ i ≤ maxofMAXh, let r = Hh[i ],
and l = Rr

−1[h], then i /∈ MAXh =⇒ max(xr ) < l .

Insight Centre for Data Analytics May 18, 2016 Slide 22



Upper bound changes

• Assume we have a domain that is BC(D)

• Let ri be a resident whose upper bound has changed

• Let h be the hospital corresponding to the previous upper
bound

• Find a ’replacement’ for r

Example
Hhj . . r2© . . r7© . . �Zr5© r6© r11 . .
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Arc Consistency

• Enforce BC(D)

• For any variable xi , we suppose that the upper bound is
removed

• Enforce BC(D) on the new domain

• Any value between the old and the new upper bound
does not have a support

• Repeat Until the lower bound of xi
• Complexity: O(nR × L)

• Not incremental
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Beyond Constraint Propagation

Hospital/Resident Problem with Forced and Forbidden
Pairs

• Unknown complexity

• Straightforward to solve! Just enforce BC(D) on the
domain

• O(L) to solve with our approach

Stable Marriage Problem with Forced and Forbidden
Pairs

• Best complexity O(n4) [Dias et al., 2003]

• Particular case of the above approach

• O(n2) to solve
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Experiments

Problem description

• Some couples prefer to be matched together

• Same preferences for these couples

• Find a stable matching maximizing the number of such
couples who are matched together

Insight Centre for Data Analytics May 18, 2016 Slide 26



Experiments

Protocol

• Random instances: 2k , 4k , . . . , 8k residents;
100, 200, . . . 500 hospitals; and different capacities
c ∈ {100 + 50 + k |k ∈ [0, 8]}

• BC(D) and AC Implemented in Mistral-2.0

• LEX variable branching + (min/max/randommin max)
value branching

• Geometric restarts

• 5 different seeds for ‘‘randommin max’’

• 20 minutes time cutoff
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Summary of the Results

Set BC(D)-min AC-min BC(D)-max
Time Nodes Opt Time Nodes Opt Time Nodes Opt

2k 2 16.56 100 19 13.33 100 8 256.38 100
4k 5 18.14 100 151 14.69 100 37 394.86 100
6k 9 18.08 100 393 14.89 93 86 648.82 100
8k 19 18.16 100 332 15.80 79 131 491.50 100

AC-max BC(D)-rand AC-rand
Time Nodes Opt Time Nodes Opt Time Nodes Opt

2k 28 204.53 100 4 67.36 100 12 81.91 100
4k 202 320.33 100 12 81.91 100 160 65.61 100
6k 564 535.65 85 25 120.58 100 502 99.20 92
8k 530 432.87 69 42 98.88 100 475 88.11 77
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Runtime
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Speed of Exploration
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Conclusion and Future Research

Contributions

• Previous CP propositions maintain only BC(D)

• A better implementation of BC(D) in O(L) time

• An adaptation of BC(D) to achieve AC

• First polynomial algorithm to solve the Hospital/Resident
problem with forced and forbidden pairs

• Improving the worst case complexity to solve SM with
forced and forbidden pairs by a factor of O(n2)

Future Research

• Better implementation for AC?

• New global constraints are coming for different stable
matching problems..
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Thank you.
Picture taken from The New York Times
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