Insight

Revisiting Two-Sided Stability

 ConstraintsMohamed Siala/Barry O'Sullivan

May 18, 2016

$$
\mathrm{DCU}
$$

$2{ }^{2} \mathrm{sfl}$

Context

Context

- Matching under preferences \& Constraint Programming?

Context

- Matching under preferences \& Constraint Programming?
- Few CP formulations exist in the literature for stable matching

Context

- Matching under preferences \& Constraint Programming?
- Few CP formulations exist in the literature for stable matching
- Not much about local consistency levels

Context

- Matching under preferences \& Constraint Programming?
- Few CP formulations exist in the literature for stable matching
- Not much about local consistency levels
- Global constraints for stable matching problems?

Matching Under Рreferences

- They are everywhere!
- For instance, assigning students to universities/residents to hospitals/ workers to firms . . .

Matching Under Preferences

- They are everywhere!
- For instance, assigning students to universities/residents to hospitals/ workers to firms . . .
- Bipartie structure with two sided preferences
- Bipartie structure with one sided preferences
- Non-bipartie structure

Matching Under Preferences

- They are everywhere!
- For instance, assigning students to universities/residents to hospitals/ workers to firms . . .
- Bipartie structure with two sided preferences
- Bipartie structure with one sided preferences
- Non-bipartie structure

Stable Marriage [Gale and Shapley, 1962]

Stable Marriage [Gale and Shapley, 1962]

- $\sigma^{x}, \sigma^{x}, \sigma^{x}, \cdots$
- O, O, O, ...
- Two sided preferences
- A matching M is stable when no blocking pair exists
- A pair ($\sigma^{\pi}, \uparrow \uparrow$) is blocking a matching M if or/q prefer each other to their situation in M

[Gale and Shapley, 1962]

[Gale and Shapley, 1962]

- Male proposals

[Gale and Shapley, 1962]

		안	¢	¢		0^{7}	${ }^{\text {a }}$	0^{3}	0^{7}
0^{7} :	+	¢	+	¢		0^{7}	0^{7}	0^{7}	0^{7}
	¢ 9	¢	+	안		$0^{\text {a }}$	0^{1}		0^{7}
	¢	¢	안	¢			0^{7}	${ }^{\text {r }}$	(0

- Male proposals $\left(0^{7}, 9\right)$

[Gale and Shapley, 1962]

0^{7} :	*	¢	¢	¢	우:	0^{7}	0^{7}	0^{7}	0^{7}
0^{7} :	(9)	¢	ㅇ	¢	안	0^{7}	0^{7}	0^{7}	0^{7}
0^{7} :	앙	아	+	+	\bigcirc ¢	0^{7}	0^{7}	0^{7}	0^{7}
O^{7} :	¢	¢	-	¢	¢	0^{7}	0^{7}	(${ }^{5}$	K

- Male proposals

[Gale and Shapley, 1962]

	(9)	ㅇ	¢	¢:	0^{7}	0^{7}	0^{7}	0^{7}
(9)		-	¢	\bigcirc ¢	0^{7}	0^{7}	0^{7}	0^{7}
¢	+	아	¢	¢:	0^{7}	0^{7}	0^{7}	(0
안	¢	+	¢	¢:	0^{7}	0^{7}	(6)	

- Male proposals
$\left(0^{7}, ¢\right),\left(0^{7}, \uparrow\right),\left(0^{7}, ¢\right)$

[Gale and Shapley, 1962]

- Male proposals

[Gale and Shapley, 1962]

			¢	¢		O^{7}	0^{7}		(3)		
	(9)	¢	¢	안	¢	O	0^{3}		0^{7}	\bigcirc	
0^{1} :	*	+	+	+	¢	${ }^{\text {or }}$	O		0^{7}	(
		ㅇ	+	안		${ }^{7}$			(3)		

- Male proposals

[Gale and Shapley, 1962]

- Male proposals

[Gale and Shapley, 1962]

- Male proposals
$\left(0^{7}, 9\right),\left(0^{7}, \varphi\right),\left(0^{7}, \varphi\right),\left(0^{7}, \varphi\right),\left(0^{7}, \varphi\right),\left(0^{7}, 9\right)$
- Female proposals

[Gale and Shapley, 1962]

- Male proposals

- Female proposals
$\left(q, \sigma^{7}\right)$

[Gale and Shapley, 1962]

- Male proposals
- Female proposals

$$
\left(q, 0^{x}\right),\left(q, 0^{1}\right)
$$

[Gale and Shapley, 1962]

- Male proposals
- Female proposals

$$
\left(q, 0^{4}\right),\left(q, 0^{7}\right),\left(q, 0^{7}\right)
$$

[Gale and Shapley, 1962]

- Male proposals
- Female proposals

$$
\left(q, 0^{7}\right),\left(q, o^{7}\right),\left(q, 0^{7}\right),\left(q, 0^{7}\right)
$$

[Gale and Shapley, 1962]

- Male proposals
- Female proposals

The Hospital/Resident Problem

The Hospital/Resident Problem

- Many to one extension of SM

The Hospital/Resident Problem

- Many to one extension of SM
- Two sets of agents: residents r_{1}, r_{2}, \ldots and hospitals h_{1}, h_{2}, \ldots

The Hospital/Resident Problem

- Many to one extension of SM
- Two sets of agents: residents r_{1}, r_{2}, \ldots and hospitals h_{1}, h_{2}, \ldots
- Preferences without ties

The Hospital/Resident Problem

- Many to one extension of SM
- Two sets of agents: residents r_{1}, r_{2}, \ldots and hospitals h_{1}, h_{2}, \ldots
- Preferences without ties
- Each hospital h_{j} has a capacity c_{j}
- Notation: i better than j w.r.t. a list $L: i \prec_{L} \prec j$ or $j \succ_{L} i$

The Hospital/Resident Problem

- Many to one extension of SM
- Two sets of agents: residents r_{1}, r_{2}, \ldots and hospitals h_{1}, h_{2}, \ldots
- Preferences without ties
- Each hospital h_{j} has a capacity c_{j}
- Notation: i better than j w.r.t. a list $L: i \prec_{L} \prec j$ or $j \succ_{L} i$
- Find a stable matching?

Previous CP Approaches

- Some global constraints exist in the literature [Gent et al., 2001, Unsworth and Prosser, 2005, Manlove et al., 2007, Unsworth and Prosser, 2013]

Previous CP Approaches

- Some global constraints exist in the literature [Gent et al., 2001, Unsworth and Prosser, 2005, Manlove et al., 2007, Unsworth and Prosser, 2013]
- They are all equivalent in terms filtering (even for SM)

Previous CP Approaches

- Some global constraints exist in the literature [Gent et al., 2001, Unsworth and Prosser, 2005, Manlove et al., 2007, Unsworth and Prosser, 2013]
- They are all equivalent in terms filtering (even for SM)
- They all are equivalent to the GL-Lists

Previous CP Approaches

- Some global constraints exist in the literature [Gent et al., 2001, Unsworth and Prosser, 2005, Manlove et al., 2007, Unsworth and Prosser, 2013]
- They are all equivalent in terms filtering (even for SM)
- They all are equivalent to the GL-Lists
- What is the level of consistency?

CP Model for Hospital/Resident Problem (Г)

Variables

- x_{i} : index of the hospital assigned to r_{i}
- $y_{j, k}$: index of the resident assigned to the $k^{\text {th }}$ position in h_{j}

Constraints

$$
\begin{gather*}
y_{j, k}<y_{j, k+1}\left(\forall j \in\left[1, n_{H}\right], \forall k \in\left[1, c_{j}-1\right]\right) \tag{1}\\
y_{j, k} \geq q_{i, j} \Longrightarrow x_{i} \leq p_{i, j}\left(\forall j \in\left[1, n_{H}\right], \forall k \in\left[1, c_{j}\right], \forall i \in \mathcal{H}_{j}\right) \tag{2}\\
x_{i} \neq p_{i, j} \Longrightarrow y_{j, k} \neq q_{i, j}\left(\forall i \in\left[1, n_{R}\right], \forall j \in \mathcal{R}_{i}, \forall k \in\left[1, c_{j}\right]\right) \tag{3}\\
\left(x_{i} \geq p_{i, j} \wedge y_{j, k-1}<q_{i, j}\right) \Longrightarrow y_{j, k} \leq q_{i, j}\left(\forall i \in\left[1, n_{R}\right], \forall j \in \mathcal{R}_{i}, \forall k \in\left[1, c_{j}\right]\right) \tag{4}\\
y_{j, c_{j}}<q_{i, j} \Longrightarrow x_{i} \neq p_{i, j}\left(\forall j \in\left[1, n_{H}\right], \forall i \in \mathcal{H}_{j}\right) \tag{5}
\end{gather*}
$$

Example

$$
\begin{array}{l||l}
\mathcal{R}_{1}=[3,2,1] & \mathcal{H}_{1}=[1,2,4] \\
\mathcal{R}_{2}=[4,1,3,2] & \mathcal{H}_{2}=[2,1,3] \\
\mathcal{R}_{3}=[2,4,3] & \mathcal{H}_{3}=[3,2,4,1] \\
\mathcal{R}_{4}=[1,3,4] & \mathcal{H}_{4}=[4,3,2]
\end{array}
$$

Initial Domain

- $\mathcal{D}\left(x_{1}\right)=\mathcal{D}\left(x_{3}\right)=\mathcal{D}\left(x_{4}\right)=\{1,2,3,5\}$
- $\mathcal{D}\left(x_{2}\right)=\{1,2,3,4,5\}$
- $\mathcal{D}\left(y_{1,0}\right)=\mathcal{D}\left(y_{2,0}\right)=\mathcal{D}\left(y_{3,0}\right)=\mathcal{D}\left(y_{4,0}\right)=\{0\}$
- $\mathcal{D}\left(y_{1,1}\right)=\mathcal{D}\left(y_{2,1}\right)=\mathcal{D}\left(y_{4,1}\right)=\{1,2,3,5\}$
- $\mathcal{D}\left(y_{3,1}\right)=\{1,2,3,4,5\}$

2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$

- \mathcal{X} is the set of variables $x_{1}, \ldots, x_{n_{R}}$ defined the same way in Γ,
- $\mathcal{A}=\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{n_{R}}\right\}$
- $\mathcal{B}=\left\{\mathcal{H}_{1}, \ldots, \mathcal{H}_{n_{H}}\right\}$
- $\mathcal{C}=\left\{c_{1}, \ldots, c_{n_{H}}\right\}$

2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$

- \mathcal{X} is the set of variables $x_{1}, \ldots, x_{n_{R}}$ defined the same way in Γ,
- $\mathcal{A}=\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{n_{R}}\right\}$
- $\mathcal{B}=\left\{\mathcal{H}_{1}, \ldots, \mathcal{H}_{n_{H}}\right\}$
- $\mathcal{C}=\left\{c_{1}, \ldots, c_{n_{H}}\right\}$

We show that AC on Γ enforces $\mathrm{BC}(\mathrm{D})$ on any domain \mathcal{D}

Local Consistency

Local Consistency

Definitions

- A support of a constraint C in a domain \mathcal{D} is an assignment of the variables in \mathcal{D} that satisfies C

Local Consistency

Definitions

- A support of a constraint C in a domain \mathcal{D} is an assignment of the variables in \mathcal{D} that satisfies C
- A constraint in arc consistent in \mathcal{D} iff for every variable x in the scope of C, every value in $\mathcal{D}(x)$ has a support in \mathcal{D}

Local Consistency

Definitions

- A support of a constraint C in a domain \mathcal{D} is an assignment of the variables in \mathcal{D} that satisfies C
- A constraint in arc consistent in \mathcal{D} iff for every variable x in the scope of C, every value in $\mathcal{D}(x)$ has a support in \mathcal{D}
- A constraint in bound(D) consistent in \mathcal{D} iff for every variable x in the scope of $C, \min (\mathcal{D}(x))$ and $\max (\mathcal{D}(x))$ have a support in \mathcal{D}

Local Consistency

Definitions

- A support of a constraint C in a domain \mathcal{D} is an assignment of the variables in \mathcal{D} that satisfies C
- A constraint in arc consistent in \mathcal{D} iff for every variable x in the scope of C, every value in $\mathcal{D}(x)$ has a support in \mathcal{D}
- A constraint in bound(D) consistent in \mathcal{D} iff for every variable x in the scope of $C, \min (\mathcal{D}(x))$ and $\max (\mathcal{D}(x))$ have a support in \mathcal{D}
Bound(D) consistency is stronger than the classic bound consistency property

Arc Consistency using 「?

Arc Consistency using 「?

- AC removes 5 from $\mathcal{D}\left(x_{1}\right), \mathcal{D}\left(x_{2}\right), \mathcal{D}\left(x_{3}\right), \mathcal{D}\left(x_{4}\right)$
- AC removes 5 from $\mathcal{D}\left(y_{1,1}\right), \mathcal{D}\left(y_{2,1}\right), \mathcal{D}\left(y_{3,1}\right), \mathcal{D}\left(y_{4,1}\right)$
- No more propagation

Arc Consistency using 「?

- AC removes 5 from $\mathcal{D}\left(x_{1}\right), \mathcal{D}\left(x_{2}\right), \mathcal{D}\left(x_{3}\right), \mathcal{D}\left(x_{4}\right)$
- AC removes 5 from $\mathcal{D}\left(y_{1,1}\right), \mathcal{D}\left(y_{2,1}\right), \mathcal{D}\left(y_{3,1}\right), \mathcal{D}\left(y_{4,1}\right)$
- No more propagation
- Assigning 3 to x_{2} has no solution
- Γ hinders propagation!

Theorem
 [Gusfield and Irving, 1989]

Theorem
[Gusfield and Irving, 1989]

- The number of assigned residents per hospital is the same in all stable matchings

Theorem

[Gusfield and Irving, 1989]

- The number of assigned residents per hospital is the same in all stable matchings
- If a resident r_{i} is unassigned in one stable matching then it is unassigned in all stable matchings.

Theorem

[Gusfield and Irving, 1989]

- The number of assigned residents per hospital is the same in all stable matchings
- If a resident r_{i} is unassigned in one stable matching then it is unassigned in all stable matchings.
- If a hospital h_{j} is under-subscribed in one stable matching then it is assigned exactly the same residents in all stable matching

Preprocessing

- Compute the GS_lists and prune the domain accordingly (O(L))

Preprocessing

- Compute the GS_lists and prune the domain accordingly (O(L))
- Notation: HFull the set of hospitals fully subscribed in any stable matching

Necessary and Sufficient Condition for Stability

Theorem
2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ is satisfiable iff

$$
\begin{gathered}
\forall 1 \leq j \leq n_{H}, \sum_{i=1}^{n_{R}}\left(\mathcal{R}_{i}\left[x_{i}\right]==j\right) \leq c_{j} \wedge \\
\forall 1 \leq i \leq n_{R}, \forall 1 \leq j \leq n_{H}+1, x_{i}=j \Longrightarrow \\
\forall k \in[1, j[\\
\text { if } h=\mathcal{R}_{i}[k] \text { then } \\
\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[x_{m}\right]==h\right)=c_{h} \\
\wedge \\
\forall I \succ \succ \succ, \mathcal{R}_{l}\left[x_{l}\right] \neq h
\end{gathered}
$$

Lemma
If Γ is $A C$ then assigning all variables to their minimum value is solution.

Lemma
If Γ is $A C$ then assigning all variables to their minimum value is solution.

Lemma
If Γ is $A C$ then assigning all variables to their maximum value is solution.

Lemma
If Γ is $A C$ then assigning all variables to their minimum value is solution.

Lemma
If Γ is $A C$ then assigning all variables to their maximum value is solution.

Theorem
Enforcing AC on 「 makes 2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ Bound($\mathcal{D})$ consistent.

Revisiting Bound(D) Consistency

- Best BC(D) algorithm runs in $O(c \times L)$ [Manlove et al., 2007]
- We propose an optimal algorithm running in $O(L)$

Revisiting Bound(D) Consistency

- Best $\mathrm{BC}(\mathrm{D})$ algorithm runs in $O(c \times L)$ [Manlove et al., 2007]
- We propose an optimal algorithm running in $O(L)$

Theorem
2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ is $\mathrm{BC}(\mathrm{D})$ iff assigning every variable to its maximum is a solution and assigning every variable to its minimum is a solution.

Lower bound changes

- Assume we have a domain that is BC(D)
- Let r_{i} be a resident whose lower bound has changed
- Let h_{j} be the hospital corresponding to the new lower bound

Step 1

- Let h be any hospital 'between' the old and the new lower bound
- Make sure that any resident worse (in \mathcal{H}_{h}) than r_{i} cannot be assigned to h

Step 1

- Let h be any hospital 'between' the old and the new lower bound
- Make sure that any resident worse (in \mathcal{H}_{h}) than r_{i} cannot be assigned to h

Step 1

- Let h be any hospital 'between' the old and the new lower bound
- Make sure that any resident worse (in \mathcal{H}_{h}) than r_{i} cannot be assigned to h

Step 1

- Let h be any hospital 'between' the old and the new lower bound
- Make sure that any resident worse (in \mathcal{H}_{h}) than r_{i} cannot be assigned to h

Step 1

- Let h be any hospital 'between' the old and the new lower bound
- Make sure that any resident worse (in \mathcal{H}_{h}) than r_{i} cannot be assigned to h

Step 1

- Let h be any hospital 'between' the old and the new lower bound
- Make sure that any resident worse (in \mathcal{H}_{h}) than r_{i} cannot be assigned to h

Step 1

- Let h be any hospital 'between' the old and the new lower bound
- Make sure that any resident worse (in \mathcal{H}_{h}) than r_{i} cannot be assigned to h

Step 2

Make sure that the new hospital h_{j} has no more than c_{j} residents whose lower bound corresponds to h_{j}.

- $M I N_{h_{j}}$: The variables whose minimum corresponds to h_{j}
- If \mid MIN $_{h_{j}} \mid=c_{h_{j}}+1$: Remove the worst resident r from $M I N_{h_{j}}$ and prune h_{j} from the domain of r

Step 2

Make sure that the new hospital h_{j} has no more than c_{j} residents whose lower bound corresponds to h_{j}.

- $M I N_{h_{j}}$: The variables whose minimum corresponds to h_{j}
- If $\left|M_{I} N_{h_{j}}\right|=c_{h_{j}}+1$: Remove the worst resident r from $\mathrm{MIN}_{h_{j}}$ and prune h_{j} from the domain of r

Example

Step 2

Make sure that the new hospital h_{j} has no more than c_{j} residents whose lower bound corresponds to h_{j}.

- $M I N_{h_{j}}$: The variables whose minimum corresponds to h_{j}
- If $\left|M_{I} N_{h_{j}}\right|=c_{h_{j}}+1$: Remove the worst resident r from $\mathrm{MIN}_{h_{j}}$ and prune h_{j} from the domain of r

Example

Step 2

Make sure that the new hospital h_{j} has no more than c_{j} residents whose lower bound corresponds to h_{j}.

- $M I N_{h_{j}}$: The variables whose minimum corresponds to h_{j}
- If $\left|M_{I} N_{h_{j}}\right|=c_{h_{j}}+1$: Remove the worst resident r from $\mathrm{MIN}_{h_{j}}$ and prune h_{j} from the domain of r

Example

Step 2

Make sure that the new hospital h_{j} has no more than c_{j} residents whose lower bound corresponds to h_{j}.

- $M I N_{h_{j}}$: The variables whose minimum corresponds to h_{j}
- If $\left|M_{I} N_{h_{j}}\right|=c_{h_{j}}+1$: Remove the worst resident r from $\mathrm{MIN}_{h_{j}}$ and prune h_{j} from the domain of r

Example

Step 2

Make sure that the new hospital h_{j} has no more than c_{j} residents whose lower bound corresponds to h_{j}.

- $M I N_{h_{j}}$: The variables whose minimum corresponds to h_{j}
- If \mid MIN $_{h_{j}} \mid=c_{h_{j}}+1$: Remove the worst resident r from $\mathrm{MIN}_{h_{j}}$ and prune h_{j} from the domain of r

Example

Upper bound changes

- $M A X_{h}$: The indexes of residents where the maximum corresponds to h
- maxofMAX ${ }_{h}=\max \left(M A X_{h}\right)$

Lemma

Assigning all variables to their maximum is a solution iff $\forall h \in$ HFull, $\left|M A X_{h}\right|=c_{h}$, and $\forall i \leq \operatorname{maxofMAX} X_{h}$, let $r=\mathcal{H}_{h}[i]$, and $I=\mathcal{R}_{r}^{-1}[h]$, then $i \notin M A X_{h} \Longrightarrow \max \left(x_{r}\right)<I$.

Upper bound changes

- Assume we have a domain that is $\mathrm{BC}(\mathrm{D})$
- Let r_{i} be a resident whose upper bound has changed
- Let h be the hospital corresponding to the previous upper bound
- Find a 'replacement' for r

Upper bound changes

- Assume we have a domain that is $\mathrm{BC}(\mathrm{D})$
- Let r_{i} be a resident whose upper bound has changed
- Let h be the hospital corresponding to the previous upper bound
- Find a 'replacement' for r

Example

Upper bound changes

- Assume we have a domain that is BC(D)
- Let r_{i} be a resident whose upper bound has changed
- Let h be the hospital corresponding to the previous upper bound
- Find a 'replacement' for r

Example

Upper bound changes

- Assume we have a domain that is BC(D)
- Let r_{i} be a resident whose upper bound has changed
- Let h be the hospital corresponding to the previous upper bound
- Find a 'replacement' for r

Example

Upper bound changes

- Assume we have a domain that is $\mathrm{BC}(\mathrm{D})$
- Let r_{i} be a resident whose upper bound has changed
- Let h be the hospital corresponding to the previous upper bound
- Find a 'replacement' for r

Example

$\mathcal{H}_{h_{j}} \cdot$ • (12) • • (17) • • 㓎 (66) r_{11}

Arc Consistency

Arc Consistency

- Enforce BC(D)

Arc Consistency

- Enforce BC(D)
- For any variable x_{i}, we suppose that the upper bound is removed

Arc Consistency

- Enforce BC(D)
- For any variable x_{i}, we suppose that the upper bound is removed
- Enforce BC(D) on the new domain

Arc Consistency

- Enforce BC(D)
- For any variable x_{i}, we suppose that the upper bound is removed
- Enforce BC(D) on the new domain
- Any value between the old and the new upper bound does not have a support

Arc Consistency

- Enforce BC(D)
- For any variable x_{i}, we suppose that the upper bound is removed
- Enforce BC(D) on the new domain
- Any value between the old and the new upper bound does not have a support
- Repeat Until the lower bound of x_{i}

Arc Consistency

- Enforce BC(D)
- For any variable x_{i}, we suppose that the upper bound is removed
- Enforce BC(D) on the new domain
- Any value between the old and the new upper bound does not have a support
- Repeat Until the lower bound of x_{i}
- Complexity: $O\left(n_{R} \times L\right)$

Arc Consistency

- Enforce BC(D)
- For any variable x_{i}, we suppose that the upper bound is removed
- Enforce BC(D) on the new domain
- Any value between the old and the new upper bound does not have a support
- Repeat Until the lower bound of x_{i}
- Complexity: $O\left(n_{R} \times L\right)$
- Not incremental

Beyond Constraint Propagation

Beyond Constraint Propagation

Hospital/Resident Problem with Forced and Forbidden Pairs

- Unknown complexity
- Straightforward to solve! Just enforce BC(D) on the domain
- $O(L)$ to solve with our approach

Beyond Constraint Propagation

Hospital/Resident Problem with Forced and Forbidden Pairs

- Unknown complexity
- Straightforward to solve! Just enforce BC(D) on the domain
- $O(L)$ to solve with our approach

Stable Marriage Problem with Forced and Forbidden Pairs

- Best complexity $O\left(n^{4}\right)$ [Dias et al., 2003]
- Particular case of the above approach
- $O\left(n^{2}\right)$ to solve

Experiments

Problem description

- Some couples prefer to be matched together
- Same preferences for these couples
- Find a stable matching maximizing the number of such couples who are matched together

Experiments

Protocol

- Random instances: $2 k, 4 k, \ldots, 8 k$ residents; 100, 200, . . 500 hospitals; and different capacities $c \in\{100+50+k \mid k \in[0,8]\}$
- BC(D) and AC Implemented in Mistral-2.0
- LEX variable branching + (min/max/random min max) value branching
- Geometric restarts
- 5 different seeds for "random min max"
- 20 minutes time cutoff

Summary of the Results

	BC(D)-min			AC-min			BC(D)-max		
Set	Time	Nodes	Opt	Time	Nodes	Opt	Time	Nodes	Opt
2 k	2	16.56	$\mathbf{1 0 0}$	19	13.33	100	8	256.38	100
4 k	5	18.14	100	151	14.69	100	37	394.86	100
6 k	9	18.08	100	393	14.89	93	86	648.82	100
8k	19	18.16	100	332	15.80	79	131	491.50	100

	AC-max			BC(D)-rand			AC-rand		
	Time	Nodes	Opt	Time	Nodes	Opt	Time	Nodes	Opt
2 kk	28	204.53	$\mathbf{1 0 0}$	4	67.36	$\mathbf{1 0 0}$	12	81.91	100
4 k	202	320.33	$\mathbf{1 0 0}$	12	81.91	$\mathbf{1 0 0}$	160	65.61	100
6 k	564	535.65	85	25	120.58	100	502	99.20	92
8 k	530	432.87	69	42	98.88	100	475	88.11	77

Runtime

Speed of Exploration

Conclusion and Future Research

Contributions

- Previous CP propositions maintain only BC(D)
- A better implementation of $\mathrm{BC}(\mathrm{D})$ in $O(L)$ time
- An adaptation of $B C(D)$ to achieve $A C$
- First polynomial algorithm to solve the Hospital/Resident problem with forced and forbidden pairs
- Improving the worst case complexity to solve SM with forced and forbidden pairs by a factor of $O\left(n^{2}\right)$

Conclusion and Future Research

Contributions

- Previous CP propositions maintain only BC(D)
- A better implementation of $\mathrm{BC}(\mathrm{D})$ in $O(L)$ time
- An adaptation of $B C(D)$ to achieve $A C$
- First polynomial algorithm to solve the Hospital/Resident problem with forced and forbidden pairs
- Improving the worst case complexity to solve SM with forced and forbidden pairs by a factor of $O\left(n^{2}\right)$

Future Research

- Better implementation for AC ?
- New global constraints are coming for different stable matching problems..

Thank you.

Picture taken from The New York Times

References I

高
Dias, V. M. F., da Fonseca, G. D., de Figueiredo, C. M. H., and Szwarcfiter, J. L. (2003).

The stable marriage problem with restricted pairs.
Theor. Comput. Sci., 306(1-3):391-405.

Gale, D. and Shapley, L. S. (1962).
College admissions and the stability of marriage.
American mathematical monthly, pages 9-15.

Gent, I. P., Irving, R. W., Manlove, D., Prosser, P., and Smith, B. M. (2001). A constraint programming approach to the stable marriage problem.
In Proceedings of CP, pages 225-239.

Gusfield, D. and Irving, R. W. (1989).
The Stable marriage problem - structure and algorithms.
Foundations of computing series. MIT Press.
Manlove, D., O'Malley, G., Prosser, P., and Unsworth, C. (2007).
A constraint programming approach to the hospitals / residents problem.
In Proceedings of CPAIOR, pages 155-170.

References II

三
Unsworth, C. and Prosser, P. (2005).
A specialised binary constraint for the stable marriage problem.
In Abstraction, Reformulation and Approximation, 6th International Symposium, SARA 2005, Airth Castle, Scotland, UK, July 26-29, 2005, Proceedings, pages 218-233.
Unsworth, C. and Prosser, P. (2013).
An n -ary constraint for the stable marriage problem.
CoRR, abs/1308.0183.

