Search, propagation, and learning in sequencing and scheduling problems

Mohamed Siala

Christian Artigues Fahiem Bacchus Christian Bessiere Hadrien Cambazard Emmanuel Hebrard George Katsirelos Christine Solnon LAAS-CNRS Toulouse University of Toronto LIRMM Montpellier G-SCOP & Grenoble INP LAAS-CNRS Toulouse INRA Toulouse INSA Lyon

► < ∃ ►</p>

Context

Sequencing and Scheduling: the organization in time of of operations subject to capacity and resource constraints.

PhD Context

- Combinatorial (optimization) problems
- Constraint satisfaction and optimization
- Laboratory: LAAS-CNRS, Toulouse
- Research Team: ROC
- Supervision: Christian Artigues, and Emmanuel Hebrard
- Funding:

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thesis overview

Constraint Programming: Search \oplus Propagation

<ロ> (日) (日) (日) (日) (日)

Thesis overview

Constraint Programming: Search \oplus Propagation \oplus Learning

イロト イポト イヨト イヨト

Thesis overview

Constraint Programming: Search \oplus Propagation \oplus Learning

All these aspects are important and must all be taken into account in order to design efficient solution methods

Mohamed Siala

May 2015 4 / 55

Outline

Context

2 Background

- Case Study: The Car-Sequencing Problem
 - Propagation
 - Search
 - Learning
- 4 Learning in Disjunctive Scheduling
- Conclusions & Perspectives

イロト イ団ト イヨト イヨト

A constraint is a finite relation

hamed	

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- $\mathcal{X} = [x_1, \dots, x_n]$: finite set of variables
- \mathcal{D} : a domain for \mathcal{X}
- C: finite set of constraints

(3)

A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- $\mathcal{X} = [x_1, \dots, x_n]$: finite set of variables
- \mathcal{D} : a domain for \mathcal{X}
- C: finite set of constraints
- Constraint Satisfaction Problem (CSP): deciding whether a constraint network has a solution or not
- CSP is NP-Hard in general

A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- $\mathcal{X} = [x_1, \dots, x_n]$: finite set of variables
- \mathcal{D} : a domain for \mathcal{X}
- C: finite set of constraints
- Constraint Satisfaction Problem (CSP): deciding whether a constraint network has a solution or not
- CSP is NP-Hard in general
- Complete backtracking algorithms

Mo	hamed	Sia	h
1110	namee	514	ru

・ロト ・回ト ・ヨト ・ヨ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Search: decisions to explore the search tree

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering

(日) (同) (三) (三)

- Search: decisions to explore the search tree
- \bullet Search in $\mathrm{CP}{=}$ variable ordering + value ordering
- Standard or customized

(日) (同) (三) (三)

- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering
- Standard or customized

Variable Ordering

'Fail-first' principle [Haralick and Elliott, 1980]:"To succeed, try first where you are most likely to fail"

< 3 > < 3

- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering
- Standard or customized

Variable Ordering

'Fail-first' principle [Haralick and Elliott, 1980]:"To succeed, try first where you are most likely to fail"

Value Ordering

'succeed-first' [Geelen, 1992]:

Best chances leading to a solution

• • = • • = •

Propagation

*ロト *檀ト *注ト *注ト

Propagation

- Propagation: inferences based on the current state
- Constraint \leftrightarrow a propagator
- Propagators are executed sequentially before taking any decision
- \bullet The level of pruning \leftrightarrow local consistency

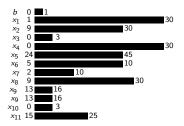
3

Propagation

Propagation

- Propagation: inferences based on the current state
- Constraint \leftrightarrow a propagator
- Propagators are executed sequentially before taking any decision
- The level of pruning \leftrightarrow local consistency

Arc Consistency

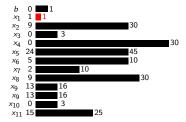

- Let \mathcal{D} be a domain, and C be a constraint
- C is Arc Consistent (AC) iff for every x in the scope of C, for every value $v \in \mathcal{D}(x)$ there exists an assignment w in \mathcal{D} satisfying C in which v is assigned to x

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

◆□> ◆圖> ◆国> ◆国> 「国」

Mohar

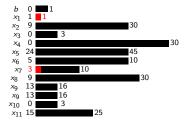
 $\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 \pm x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$


	< د	•••	<.≣>	◆≣≯	æ	$\mathcal{O} \mathcal{Q} \mathcal{O}$
imed Siala	PhD Defense			May 2015		10 / 55

Background

Learning

 $[\![x_1 = 1]\!]$

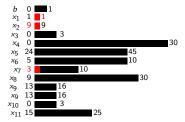

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

	4	o ► ≺∂	$\rightarrow + \pm$	 E ≥ 	3	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Mohamed Siala	PhD Defense			May 2015		10 / 55

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

æ

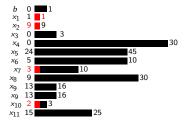

10 / 55

	4	< ⊡ >	く目り	 < ≣ >
Mohamed Siala	PhD Defense			May 2015

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$

 $[x_2 = 9]$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

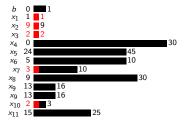


	< 1	∢≣≯	★≣≯	æ	୬୯୯
Mohamed Siala	PhD Defense		May 2015		10 / 55

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$

$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

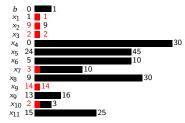

	4 L		2 3 E 2	± *) α(*
la	PhD Defense		May 2015	10 / 55

$$[\![x_1=1]\!] \longrightarrow [\![x_7 \ge 3]\!]$$

$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$

 $[x_3 = 2]$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

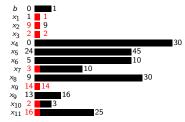

	∢ [◆臣▶ ◆臣▶	Ξ.	୬୯୯
lohamed Siala	PhD Defense	May 2015		10 / 55

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$

$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$

$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$



	∢ [< ⊡ >	< ₽	▶ ◀ ≞ ▶	Ξ.	4) Q (4
Mohamed Siala	PhD Defense			May 2015		10 / 55

$$[\![x_1=1]\!] \longrightarrow [\![x_7 \ge 3]\!]$$

$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$
$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket \rightarrow \llbracket x_{11} \ge 16 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

10 / 55

	4		1 = 1	< ₹ >	
Mohamed Siala	PhD Defense			May 201	5

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$
$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$
$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket \rightarrow \llbracket x_{11} \ge 16 \rrbracket$$

 $[x_4 = 0]$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

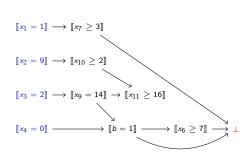
	. ►	• • • •	► < \E >	◆夏≯	æ	୬୯୯
Mohamed Siala	PhD Defense			May 2015		10 / 55

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$
$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$
$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket \rightarrow \llbracket x_{11} \ge 16 \rrbracket$$
$$\llbracket x_4 = 0 \rrbracket \longrightarrow \llbracket b = 1 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

<ロ> (日) (日) (日) (日) (日)

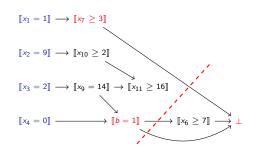
▲ ■ ▶ ■ つへで May 2015 10 / 55


$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$
$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$
$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket \rightarrow \llbracket x_{11} \ge 16 \rrbracket$$
$$\llbracket x_4 = 0 \rrbracket \longrightarrow \llbracket b = 1 \rrbracket \longrightarrow \llbracket x_6 \ge 7 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

<ロ> (日) (日) (日) (日) (日)

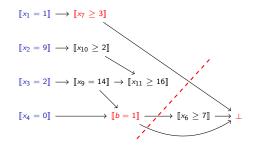
▲ 置 → 置 → Q へ May 2015 10 / 55


$x_1 + x_7 \ge 4 \land$
$x_2 + x_{10} \ge 11 \land$
$x_3 + x_9 = 16 \wedge$
$x_5 \ge x_8 + x_9 \wedge$
$b \leftrightarrow (x_9 - x_4 = 14) \wedge$
$b \rightarrow (x_6 \geq 7) \land$
$b \rightarrow (x_6 + x_7 \leq 9) \wedge$
$x_{11} \ge x_9 + x_{10}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

May 2015 10 / 55

Learning


• Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$

 $\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$

(日) (周) (三) (三)

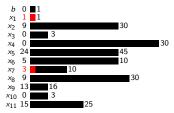
▲ ■ ► ■ つへの May 2015 10 / 55

• Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$

• New clause:
$$\llbracket b \neq 0 \rrbracket \lor \llbracket x_7 \leq 2 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

(日) (周) (三) (三)

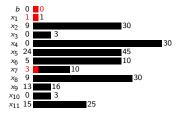

▲ 置 ▶ 置 少 ९ ୯ May 2015 10 / 55

Learning

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$

- Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$
- New clause: $\llbracket b \neq 0 \rrbracket \lor \llbracket x_7 \le 2 \rrbracket$
- Backtrack to level 1

 $\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$


(日) (周) (三) (三)

Learning

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket \longrightarrow \llbracket b = 0 \rrbracket$$

- Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$
- New clause: $\llbracket b \neq 0 \rrbracket \lor \llbracket x_7 \le 2 \rrbracket$
- Backtrack to level 1
- Propagate the learnt clause

$$\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$$

(日) (同) (三) (三)

▲ 重 ト 重 少 ९ ୯ May 2015 10 / 55

Learning

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket \longrightarrow \llbracket b = 0 \rrbracket$$

- Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$
- New clause: $\llbracket b \neq 0 \rrbracket \lor \llbracket x_7 \leq 2 \rrbracket$
- Backtrack to level 1
- Propagate the learnt clause
- Continue exploration

$$\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$$

(日) (同) (三) (三)

Learning in CP

- \bullet Hybrid ${\rm CP}/{\sf SAT}$
- Based on the notion of explanation
- Conflict Driven Clause Learning (CDCL) [Moskewicz et al., 2001]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<ロ> (日) (日) (日) (日) (日)

< ロ > < 同 > < 三 > < 三

Contributions

• Search in car-sequencing

hamed	

∃ ▶ ∢

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

- Search in car-sequencing
- Propagation in a class of sequencing problems

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

- Search in car-sequencing
- Propagation in a class of sequencing problems
- Learning in car-sequencing

∃ ▶ ∢

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

- Search in car-sequencing
- Propagation in a class of sequencing problems
- Learning in car-sequencing
- Revisiting lazy generation

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

- Search in car-sequencing
- Propagation in a class of sequencing problems
- Learning in car-sequencing
- Revisiting lazy generation
- Learning in disjunctive scheduling

Outline

Background

3 Case Study: The Car-Sequencing Problem

- Propagation
- Search
- Learning

Conclusions & Perspectives

→ 3 → 4 3

- ∢ ⊢⊒ →

Car-Sequencing

- ROADEF'05 challenge [Solnon et al., 2008]
- RENAULT

Mohamed Siala

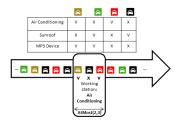
- < A

Mohamed Siala

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• A class of vehicles is defined by a set of options

	ame		


< ロ > < 同 > < 三 > < 三

- A class of vehicles is defined by a set of options
- Each class is associated to a demand

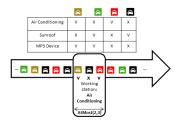

→ 3 → 4 3

Image: Image:

- A class of vehicles is defined by a set of options
- Each class is associated to a demand
- Capacity constraints: no subsequence of size *q* may contain more than *p* vehicles requiring a given option

< ∃ ►

- A class of vehicles is defined by a set of options
- Each class is associated to a demand
- Capacity constraints: no subsequence of size *q* may contain more than *p* vehicles requiring a given option
- Is there a sequence of cars satisfying both demand and capacity constraints?

hamed	

Outline

2 Background

3 Case Study: The Car-Sequencing Problem

- Propagation
- Search
- Learning

Conclusions & Perspectives

→ 3 → 4 3

< 🗇 🕨

<ロ> (日) (日) (日) (日) (日)

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

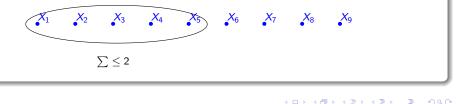
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

IVIO	hamed	Sia	la

< ロ > < 同 > < 三 > < 三

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

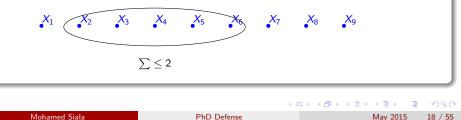

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

$$X_1$$
 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9

Definition

 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

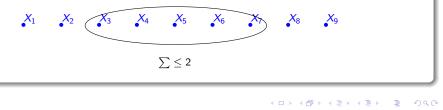
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$



IVIO	hamed	Sia	a

Definition

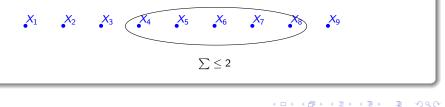
 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$


$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Definition

 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$



Definition

 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

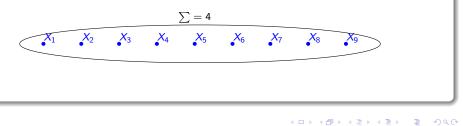
Example ATMOSTSEQCARD($2, 5, 4, [x_1, \ldots, x_9]$)

hamed	

May 2015 18 / 55

Definition

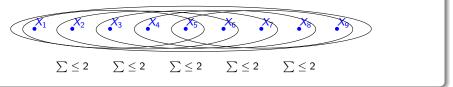
 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$


$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Definition

 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

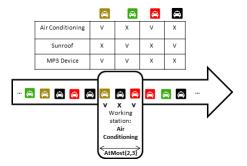
$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$



Definition

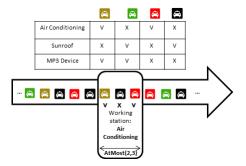
 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$


Example ATMOSTSEQCARD(2, 5, 4, $[x_1, \ldots, x_9]$) $\sum = 4$

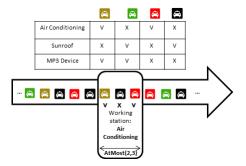
<ロ> (日) (日) (日) (日) (日)

<ロ> (日) (日) (日) (日) (日)


Car sequencing

- One ATMOSTSEQCARD per option
- \bullet Capacity constraints \oplus demand constraints

N /	hamed	C:	
IVIO	nameu	Siai	а


Car sequencing

- One ATMOSTSEQCARD per option
- \bullet Capacity constraints \oplus demand constraints
- But also useful in crew-rostering

named	

Car sequencing

- One ATMOSTSEQCARD per option
- \bullet Capacity constraints \oplus demand constraints
- But also useful in crew-rostering

named	

Arc Consistency

$\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

 $\operatorname{ATMOSTSEQ}(p, q, [x_1, \dots, x_n]) \land \operatorname{Cardinality}(d, [x_1, \dots, x_n])$

(日) (同) (三) (三)

Arc Consistency

 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

 $\mathsf{ATMOSTSEQ}(\textit{p},\textit{q},[x_1,\ldots,x_n]) \land \mathsf{CARDINALITY}(\textit{d},[x_1,\ldots,x_n])$

• $\operatorname{AtMostSeq} \oplus \operatorname{Cardinality}$ is not enough

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Arc Consistency

 $\operatorname{ATMOSTSEQCARD}(p, q, d, [x_1, \ldots, x_n]) \Leftrightarrow$

 $\operatorname{ATMOSTSEQ}(p, q, [x_1, \dots, x_n]) \land \operatorname{Cardinality}(d, [x_1, \dots, x_n])$

 $\bullet\ \operatorname{AtMostSeq} \oplus \operatorname{Cardinality}$ is not enough

ATMOSTSEQCARD as a particular case?

- COST-REGULAR: $O(2^q n)$ [van Hoeve et al., 2009]
- GEN-SEQUENCE: $O(n^3)$ [van Hoeve et al., 2009]
- GEN-SEQUENCE: O(n².log(n)) down a branch ⊕ initial compilation of O(q.n²). [Maher et al., 2008].

(日) (周) (三) (三)

AC on $\operatorname{ATMOSTSEQCARD}$

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

< ∃ > <

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

An example with $\operatorname{ATMOSTSEQCARD}(4, 8, 12, [x_1, \dots, x_{22}])$. 0 0 1 0 1

Mo	hamed	Siala
1010	nameu	Jiala

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

 An example with ATMOSTSEQCARD(4, 8, 12, [x1, ..., x22])

 . 0 0 1 0 1

 ATMOSTSEQ and CARDINALITY are AC

 . 0 0 1 0

 . 0 0 1 0

Mohamed	512	

AC on $\operatorname{AtMostSeqCard}$

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

hamed	

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

An example with $\operatorname{ATMOSTSEQCARD}(4, 8, 12, [x_1, \dots, x_{22}])$

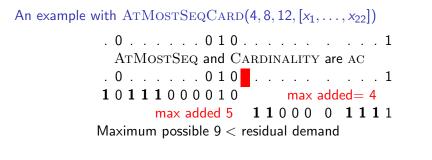
< ∃ > <

AC on ATMOSTSEQCARD

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

An example with ATMOSTSEQCARD(4, 8, 12, $[x_1, ..., x_{22}]$) . 0 0 1 0 1 ATMOSTSEQ and CARDINALITY are AC . 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 max added = 4 max added 5 1 1 0 0 0 0 1 1 1 1

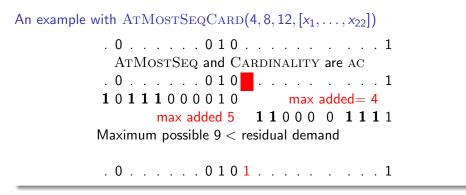

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Propagation

AC on ATMOSTSEQCARD

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule



Propagation

AC on ATMOSTSEQCARD

Key idea

- \bullet Enforce AC on $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Complete the filtering based on a greedy rule

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Achieving Arc consistency

- leftmost: a greedy rule computing an assignment w of maximum cardinality with respect to ATMOSTSEQ.
- leftmost_count: a linear implementation returning for each *i* the maximum cardinality that can be added until *i*
- L: leftmost_count from left to right
- R: leftmost_count from right to left

A B A A B A

Achieving Arc consistency

- leftmost: a greedy rule computing an assignment w of maximum cardinality with respect to ATMOSTSEQ.
- leftmost_count: a linear implementation returning for each *i* the maximum cardinality that can be added until *i*
- L: leftmost_count from left to right
- R: leftmost_count from right to left

Achieving AC in linear time

0 AC on $\operatorname{ATMOSTSEQ}$ and $\operatorname{Cardinality}$

• If
$$L[n] < d_{res}$$
: failure

- If $L[n] = d_{res}$, then $\forall i$:
 - If $L[i] + R[n i + 1] \le d_{res}$, then x_i is assigned to 0.
 - If $L[i-1] + R[n-i] < d_{res}$, then x_i is assigned to 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ATMOSTSEQCARD(4, 8, 12)

hamed	

ATMOSTSEQCARD(4, 8, 12)

		0		÷		·			0	1	0			÷	·			·				1	
₩[i]	1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	

Mohamed	

ATMOSTSEQCARD(4, 8, 12)

			0							0	1	0											1	
$\overrightarrow{w}[i]$		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	
L[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10	

M				

ATMOSTSEQCARD(4, 8, 12)

			0							0	1	0											1
$\overrightarrow{w}[i]$		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1
L[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10
₩[i]		1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	0	0	0	1	1	1	1

hame	

ATMOSTSEQCARD(4, 8, 12)

			0							0	1	0											1	
$\overrightarrow{w}[i]$		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	
L[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10	
₩[i]		1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	0	0	0	1	1	1	1	
R[i]		10	9	9	9	8	7	6	6	6	6	6	6	5	4	3	3	3	3	3	2	1	0	0

hame	

ATMOSTSEQCARD(4, 8, 12)

			0							0	1	0											1	
$\overrightarrow{w}[i]$		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	
L[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10	
$\overleftarrow{w}[i]$		1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	0	0	0	1	1	1	1	
R[i]		10	9	9	9	8	7	6	6	6	6	6	6	5	4	3	3	3	3	3	2	1	0	0
L[i] + R[n - i + 1]		11	10	11	12	12	11	10	10	10	10	10	11	11	11	10	10	10	11	11	11	11	10	
L[i-1] + R[n-i]		9	10	10	10	10	10	10	10	10	10	10	9	9	9	10	10	10	10	10	9	9	10	

ATMOSTSEQCARD(4, 8, 12)

			0							0	1	0											1	
₩[i]		1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1	
L[i]	0	1	1	2	3	4	4	4	4	4	4	4	5	6	7	7	7	7	8	8	9	10	10	
₩[i]		1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	0	0	0	1	1	1	1	
R[i]		10	9	9	9	8	7	6	6	6	6	6	6	5	4	3	3	3	3	3	2	1	0	0
L[i] + R[n - i + 1]		11	10	11	12	12	11	10	10	10	10	10	11	11	11	10	10	10	11	11	11	11	10	
L[i-1] + R[n-i]		9	10	10	10	10	10	10	10	10	10	10	9	9	9	10	10	10	10	10	9	9	10	
AC		1	0	·		·		0	0	0	1	0	1	1	1	0	0	0		·	1	1	1	

<ロ> (日) (日) (日) (日) (日)

Experimental Results

hamed	

<ロ> (日) (日) (日) (日) (日)

Experimental Results

Variables

- Class variables: *n* integer variables $\{x_1, \ldots, x_n\}$
- Option variables: *nm* Boolean variables $\{y_1^1, \ldots, y_n^m\}$

Experimental Results

Variables

- Class variables: *n* integer variables $\{x_1, \ldots, x_n\}$
- Option variables: *nm* Boolean variables $\{y_1^1, \ldots, y_n^m\}$

Constraints

- Demand constraints: $\forall c \in \{1..k\}, |\{i \mid x_i = c\}| = d_c^{class}$: Global Cardinality Constraint.
- 2 Capacity constraints:
 - **0** A naive decomposition: DECOMPOSITION
 - Ø Global Sequencing Constraint: GSC [Régin and Puget, 1997]
 - **3** AtMostSeqCard: Amsc
 - O Combine AtMostSeqCard and Gsc: $\texttt{Gsc}\oplus\texttt{AMsc}$
- S Channeling: between option and class variables

Experimental results: Car-Sequencing

<ロ> (日) (日) (日) (日) (日)

Experimental results: Car-Sequencing

	S	et1 (70	\times 42 \times 5	5)	set2 $(4 \times 42 \times 5)$					
	#sol	avg bts	max bts	time	#sol	avg bts	max bts	time		
DECOMPOSITION	8480	231.2K	25.0M	13.93	95	1.4M	15.3M	76.60		
Gsc	11218	1.7K	2.3M	3.60	325	131.7K	1.5M	110.99		
AtMostSeqCard	10702	39.1K	13.8M	4.43	360	690.8K	10.2M	72.00		
GSC⊕AMSC	11243	1.2K	1.1M	3.43	339	118.4K	1.0M	106.53		
		set3 (5	\times 42 \times 5	5)	set4 $(7 \times 42 \times 5)$					
	#sol a	avg bts	max bts	time	#sol	avg bts	max bts	s time		
DECOMPOSITION	0	-	-	> 1200	64	543.3K	i 13.7№	1 43.81		
Gsc	31	55.3K	218.5K	276.06	140	25.2K	321.9k	56.61		
ATMOSTSEQCARD	16	40.3K	83.4K	8.62	153	201.4K	3.2N	1 33.56		
GSC⊕AMSC	32	57.7K	244.7K	285.43	147	23.8K	371.0k	66.45		

Experimental results: Car-Sequencing

	S	et1 (70	\times 42 \times 5	5)	set2 $(4 \times 42 \times 5)$					
	#sol	avg bts	max bts	s time	#sol	avg bts	max bts	time		
DECOMPOSITION	8480	231.2K	25.0M	13.93	95	1.4M	15.3M	76.60		
Gsc	11218	1.7K	2.3M	I 3.60	325	131.7K	1.5M	110.99		
ATMOSTSEQCARD	10702	39.1K	13.8M	l 4.43	360	690.8K	10.2M	72.00		
GSC⊕AMSC	11243	1.2K	1.1M	l 3.43	339	118.4K	1.0M	106.53		
		set3 (5	\times 42 \times 5	5)	set4 $(7 \times 42 \times 5)$					
	#sol∣a	avg bts	max bts	time	e∥#so	lavg bts	max bt	s time		
DECOMPOSITION	0	-	-	> 1200	64	543.3K	13.7N	1 43.81		
Gsc	31	55.3K	218.5K	276.06	140	25.2K	321.9k	56.61		
ATMOSTSEQCARD	16	40.3K	83.4K	8.62	153	201.4K	3.2№	1 33.56		
GSC⊕AMSC	32	57.7K	244.7K	285.43	147	23.8K	371.0k	66.45		

- Best Models: ATMOSTSEQCARD and $ATMOSTSEQCARD \oplus GSC$
- $\bullet~\mathrm{GSC}$ saves more backtracks than $\mathrm{ATMOSTSEQCARD}$ but extremely slow

Propagation

Experimental results: Car-Sequencing

	S	et1 (70	\times 42 \times 5	5)	set2 $(4 \times 42 \times 5)$					
	#sol	avg bts	max bts	time	#sol	avg bts	max bts	time		
DECOMPOSITION	8480	231.2K	25.0M	13.93	95	1.4M	15.3M	76.60		
Gsc	11218	1.7K	2.3M	3.60	325	131.7K	1.5M	110.99		
ATMOSTSEQCARD	10702	39.1K	13.8M	4.43	360	690.8K	10.2M	72.00		
GSC⊕AMSC	11243	1.2K	1.1M	3.43	339	118.4K	1.0M	106.53		
		set3 (5	\times 42 \times 5	5)	set4 $(7 \times 42 \times 5)$					
	#sol a	avg bts	max bts	time	e∥#so	avg bts	max bt	s time		
DECOMPOSITION	0	-	-	> 1200	64	543.3K	13.7N	1 43.81		
Gsc	31	55.3K	218.5K	276.06	140	25.2K	321.9k	56.61		
ATMOSTSEQCARD	16	40.3K	83.4K	8.62	153	201.4K	3.2N	1 33.56		
GSC⊕AMSC	32	57.7K	244.7K	285.43	147	23.8K	371.0k	66.45		

- Best Models: ATMOSTSEQCARD and ATMOSTSEQCARD \oplus GSC
- GSC saves more backtracks than ATMOSTSEQCARD but extremely slow
- [van Hoeve et al., 2009] 65.2% while GSC⊕AMSC 96.20%

Extensions for $\operatorname{AtMostSeqCard}$

<ロ> (日) (日) (日) (日) (日)

Extensions for ATMOSTSEQCARD

 $\texttt{MULTIATMOSTSEQCARD}(p_1,..,p_m,q_1,..,q_m,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{k=1}^{m}\bigwedge_{i=0}^{n-q_k}(\sum_{l=1}^{q_k}x_{i+l}\leq p_k)\wedge(\sum_{i=1}^n x_i=d)$$

< ロ > < 同 > < 三 > < 三

Extensions for ATMOSTSEQCARD

 $\text{MULTIATMOSTSEQCARD}(p_1,..,p_m,q_1,..,q_m,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{k=1}^{m}\bigwedge_{i=0}^{n-q_k}(\sum_{l=1}^{q_k}x_{i+l}\leq p_k)\wedge(\sum_{i=1}^n x_i=d)$$

• The decomposition into *m* ATMOSTSEQCARD is hindering propagation

Extensions for ATMOSTSEQCARD

 $\texttt{MULTIATMOSTSEQCARD}(p_1,..,p_m,q_1,..,q_m,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{k=1}^{m}\bigwedge_{i=0}^{n-q_k}(\sum_{l=1}^{q_k}x_{i+l}\leq p_k)\wedge(\sum_{i=1}^n x_i=d)$$

- The decomposition into *m* ATMOSTSEQCARD is hindering propagation
- The filtering for ATMOSTSEQCARD can be adapted to achieve AC in $O(m \times n)$

Propagation

Extensions for ATMOSTSEQCARD

 $\texttt{MULTIATMOSTSEQCARD}(p_1,..,p_m,q_1,..,q_m,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{k=1}^{m}\bigwedge_{i=0}^{n-q_k}(\sum_{l=1}^{q_k}x_{i+l}\leq p_k)\wedge(\sum_{i=1}^n x_i=d)$$

- The decomposition into *m* ATMOSTSEQCARD is hindering propagation
- The filtering for ATMOSTSEQCARD can be adapted to achieve AC in $O(m \times n)$
- MULTIATMOSTSEQCARD outperforms the other models in crew-rostering

Mo	hamed	Siala

Publications

- [Honorable mention] An optimal arc consistency algorithm for a chain of atmost constraints with cardinality Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. In Principles and Practice of Constraint Programming - 18th International Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012
- An optimal arc consistency algorithm for a particular case of sequence constraint
 Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Constraints, 19(1):30–56, 2014

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Background

3 Case Study: The Car-Sequencing Problem

- Propagation
- Search
- Learning

Conclusions & Perspectives

→ 3 → 4 3

- ∢ ⊢⊒ →

Related work regarding the search strategy

Related work regarding the search strategy

• [Smith, 1996]: lex exploration, branching on class variables, evaluation based on: max option, q/p, usage rate $\frac{d.q/p}{n}$.

Search

Related work regarding the search strategy

- [Smith, 1996]: lex exploration, branching on class variables, evaluation based on: max option, q/p, usage rate $\frac{d.q/p}{p}$.
- [Régin and Puget, 1997]: middle to sides exploration, branching on option variables, evaluation based on the slack.

Related work regarding the search strategy

- [Smith, 1996]: lex exploration, branching on class variables, evaluation based on: max option, q/p, usage rate $\frac{d.q/p}{p}$.
- [Régin and Puget, 1997]: middle to sides exploration, branching on option variables, evaluation based on the slack.
- [Gottlieb et al., 2003]: static vs. dynamic, two ways for aggregating the evaluation (lex,sum)

→ 3 → 4 3

Related work regarding the search strategy

- [Smith, 1996]: lex exploration, branching on class variables, evaluation based on: max option, q/p, usage rate $\frac{d.q/p}{p}$.
- [Régin and Puget, 1997]: middle to sides exploration, branching on option variables, evaluation based on the slack.
- [Gottlieb et al., 2003]: static vs. dynamic, two ways for aggregating the evaluation (lex,sum)

Motivation

Can we combine these heuristics in one structure?

.

Search

New Classification

• Branching: *class*, option.

Mo	hamed	l Sia	la

イロト イ団ト イヨト イヨト

Search

New Classification

- Branching: class, option.
- Exploration: *lex*, *middle*.

(日) (同) (三) (三)

- Branching: class, option.
- Exploration: *lex*, *middle*.
- Selection:

イロト イヨト イヨト イヨ

- Branching: class, option.
- Exploration: *lex*, *middle*.
- Selection:

• capacity
$$p_j/q_j$$

• demand d_j^{opt}
• load $\delta_j = d_j^{opt} \cdot \frac{q_j}{\rho_j}$
• slack $\sigma_j = n - (n_j - \delta_j)$
• usage rate $\rho_j = \delta_j/n_j$
• Aggregation: $\leq_{\sum}, \leq_{Euc}, \leq_{lex}$.

• • = • • = •

- Branching: *class*, *option*.
- Exploration: *lex*, *middle*.
- Selection:
 - a capacity p_j/q_j
 demand d_j^{opt}
 load δ_j = d_j^{opt}. q_j/p_j
 slack σ_j = n (n_j δ_j)
 usage rate ρ_j = δ_j/n_j
- Aggregation: $\leq_{\sum}, \leq_{Euc}, \leq_{lex}$.

Overall 42 heuristics

 $\langle \{\textit{class},\textit{option}\}, \{\textit{lex},\textit{middle}\}, \{\textit{q}/\textit{p},\textit{d^{opt}},\delta,\textit{n}-\sigma,\rho,1\}, \{\leq_{\sum}, \leq_{\textit{Euc}}, \leq_{\textit{lex}}\} \rangle$

- What is the best configuration?
- What are the important criteria?

- What is the best configuration?
- What are the important criteria?

Summary

• Many good heuristics raise as untested combinations

- What is the best configuration?
- What are the important criteria?

Summary

- Many good heuristics raise as untested combinations
- Branching and Selection are the most crucial criteria

- What is the best configuration?
- What are the important criteria?

Summary

- Many good heuristics raise as untested combinations
- Branching and Selection are the most crucial criteria
- The most robust heuristics:

 $\langle \textit{class}, \{\textit{lex}, \textit{middle}\}, \delta, \{\leq_{\sum}, \leq_{\textit{Euc}}, \leq_{\textit{lex}}\} \rangle$

< ∃ > <

- What is the best configuration?
- What are the important criteria?

Summary

- Many good heuristics raise as untested combinations
- Branching and Selection are the most crucial criteria
- The most robust heuristics: $\langle class, \{lex, middle\}, \delta, \{\leq_{\sum}, \leq_{Euc}, \leq_{lex}\} \rangle$
- Search is as important as propagation based on two metrics *confidence* and *significance*

< ∃ > <

Publication

A study of constraint programming heuristics for the car-sequencing problem.

Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. *Engineering* Applications of Artificial Intelligence, 38(0):34 – 44, 2015

.

Outline

2 Background

3 Case Study: The Car-Sequencing Problem

- Propagation
- Search
- Learning

Conclusions & Perspectives

→ 3 → 4 3

- ∢ ⊢⊒ →

Hybrid CP/SAT Models

\bullet Models based on $\operatorname{AtMostSeqCard}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hybrid $\operatorname{CP}/\mathsf{SAT}$ Models

- \bullet Models based on $\operatorname{AtMostSeqCard}$
- \bullet We have to explain $\operatorname{AtMostSeqCard}$

< ロ > < 同 > < 三 > < 三

Hybrid $\operatorname{CP}/\mathsf{SAT}$ Models

- \bullet Models based on $\operatorname{AtMostSeqCard}$
- We have to explain ATMOSTSEQCARD

Explaining ATMOSTSEQCARD?

- \bullet Explain $\operatorname{AtMostSeQ}$ and $\operatorname{Cardinality}$
- Explaining the extra filtering: consider the naive explanation, then try to reduce it.

Explaining failure: key idea

- leftmost: a greedy rule computing an assignment w of maximum cardinality with respect to ATMOSTSEQ.
- *max*: a vector containing for each *i* the maximum cardinality in *w* of all subsequences involving *i*

Learning

Explaining failure: key idea

- leftmost: a greedy rule computing an assignment w of maximum cardinality with respect to ATMOSTSEQ.
- *max*: a vector containing for each *i* the maximum cardinality in *w* of all subsequences involving *i*

Observations

Let S: $1\ 1\ 0\ 0$. subject to ATMOST(2/5) \rightarrow leftmost on S gives $1\ 1\ 0\ 0\ 0$ Consider the sequence S_0 : $1\ 1\ .\ 0$. \rightarrow leftmost on S_0 gives $1\ 1\ 0\ 0\ 0$

Learning

Explaining failure: key idea

- leftmost: a greedy rule computing an assignment w of maximum cardinality with respect to ATMOSTSEQ.
- *max*: a vector containing for each *i* the maximum cardinality in *w* of all subsequences involving *i*

Observations

Let S: 1 1 0 0 . subject to $\operatorname{ATMOST}(2/5)$ \rightarrow leftmost on S gives 1 1 0 0 0 Consider the sequence S_0 : 1 1 . 0 . \rightarrow leftmost on S_0 gives 1 1 0 0 0

Always true when $\{ [x_i = 0] \mid max(i) = p \}$

Explaining failure: key idea

- leftmost: a greedy rule computing an assignment w of maximum cardinality with respect to ATMOSTSEQ.
- *max*: a vector containing for each *i* the maximum cardinality in *w* of all subsequences involving *i*

Observations

Let S: 1 1 0 0 . subject to $\operatorname{ATMOST}(2/5)$ \rightarrow leftmost on S gives 1 1 0 0 0 Consider the sequence S_0 : 1 1 . 0 . \rightarrow leftmost on S_0 gives 1 1 0 0 0 Always true when $\{[x_i = 0]] \mid max(i) = p\}$ Consider the sequence S_2 : . 1 0 0 . leftmost on S_2 gives 1 1 0 0 0

Explaining failure: key idea

- leftmost: a greedy rule computing an assignment w of maximum cardinality with respect to ATMOSTSEQ.
- *max*: a vector containing for each *i* the maximum cardinality in *w* of all subsequences involving *i*

Observations

Let S: 1 1 0 0 . subject to $\operatorname{ATMOST}(2/5)$ \rightarrow leftmost on S gives 1 1 0 0 0 Consider the sequence S_0 : 1 1 . 0 . \rightarrow leftmost on S_0 gives 1 1 0 0 0

Always true when $\{ [x_i = 0] \mid max(i) = p \}$

Consider the sequence S_2 : . 1 0 0 . leftmost on S_2 gives 1 1 0 0 0

Always true when $\{ [x_i = 1] \mid max(i) \neq p \}$

hamec	

A weaker domain $\widehat{\mathcal{D}}$ defined as follows:

$$egin{aligned} \widehat{\mathcal{D}}(x_i) &= \{0,1\} & ext{if } \mathcal{D}(x_i) &= \{0\} \wedge max(i) = p \ \widehat{\mathcal{D}}(x_i) &= \{0,1\} & ext{if } \mathcal{D}(x_i) = \{1\} \wedge max(i) \neq p \ \widehat{\mathcal{D}}(x_i) &= \mathcal{D}(x_i) & ext{otherwise} \end{aligned}$$

Image: A matrix

→ 3 → 4 3

A weaker domain $\widehat{\mathcal{D}}$ defined as follows:

$$egin{aligned} \widehat{\mathcal{D}}(x_i) &= \{0,1\} & ext{if } \mathcal{D}(x_i) &= \{0\} \wedge max(i) = p \ \widehat{\mathcal{D}}(x_i) &= \{0,1\} & ext{if } \mathcal{D}(x_i) = \{1\} \wedge max(i) \neq p \ \widehat{\mathcal{D}}(x_i) &= \mathcal{D}(x_i) & ext{otherwise} \end{aligned}$$

Theorem

If a failure is raised because $L[n] < d_{res}$, then the set of assignments in $\widehat{\mathcal{D}}$ is a valid nogood.

A weaker domain $\widehat{\mathcal{D}}$ defined as follows:

$$egin{aligned} \widehat{\mathcal{D}}(x_i) &= \{0,1\} & ext{if } \mathcal{D}(x_i) &= \{0\} \wedge max(i) = p \ \widehat{\mathcal{D}}(x_i) &= \{0,1\} & ext{if } \mathcal{D}(x_i) = \{1\} \wedge max(i) \neq p \ \widehat{\mathcal{D}}(x_i) &= \mathcal{D}(x_i) & ext{otherwise} \end{aligned}$$

Theorem

If a failure is raised because $L[n] < d_{res}$, then the set of assignments in $\widehat{\mathcal{D}}$ is a valid nogood.

Time Complexity

O(n) since we call leftmost_count once to built max

	ame		

hamed	

hamed	

 $Extra filtering \rightarrow Failure$

oha		

Learning

Example

Mohamed Siala

▲ 重 ト 重 少 Q (ペ May 2015 37 / 55

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

D : w	_	-	0 0																			1			
	Extra filtering \rightarrow Failure																								
max	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	2	2	2
$\widehat{\mathcal{D}}$:	1	1							1	1					0	0	0	0		0	0				1
W	1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1

 $Extra filtering \rightarrow Failure$

\mathcal{D} :	1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0				1
w	1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1
Extra filtering \rightarrow Failure																									
								Ľ/			LCI	ш <u>ь</u>	1		anto	nc									
	~	~	~	~	~	~	~	~	~	~	~	~	~		_	_	_	_				_	~	~	~
max	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	2	2	2
$\widehat{\mathcal{D}}$:	1	1							1	1					0	0	0	0		0	0				1
w	1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	2	-		-	-

Extra filtering \rightarrow Failure

Size: 22 with naive explanation and 11 with reduced explanation

\mathcal{D} :	1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0				1
w	1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1
Extra filtering \rightarrow Failure																									
								Ľ/	ll d		LEI	ing			anu	ne									
max	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	2	2	2
$\widehat{\mathcal{D}}$:	1	1							1	1					0	0	0	0		0	0				1
w.																									
vv	T	т	U	U	U	U	U	U	T	T	U	U	U	т	U	U	U	0	T	U	0	т	0	0	T

Extra filtering \rightarrow Failure

Size: 22 with naive explanation and 11 with reduced explanation

Note: not minimal

Learning

Experimental Results

Method	sat[easy] (7			[hard] (sat [*] (28	
Wethod	#suc	avg fails	time	#suc	avg fails	time	#suc	avg fails	time
CNFA	370	2073	1.71	28	337194	282.35	85	249301	105.07
CNF _S	370	1114	0.87	31	60956	56.49	65	220658	197.03
CNF _{A+S}	370	612	0.91	34	32711	36.52	77	190915	128.09
hybrid (VSIDS)	370	903	0.23	16	207211	286.32	35	177806	224.78
hybrid (VSIDS/Slot)	370	739	0.23	35	76256	64.52	37	204858	248.24
hybrid (Slot/VSIDS)	370	132	0.04	34	4568	2.50	37	234800	287.61
hybrid (Slot)	370	132	0.04	35	6304	3.75	23	174097	299.24
CP	370	43	0.03	35	57966	16.25	0	-	-
PBO-clauses	277	538743	236.94	0	-	-	43	175990	106.92
PBO-cutting planes	272	2149	52.62	0	-	-	1	5031	53.38

<ロ> (日) (日) (日) (日) (日)

Learning

Experimental Results

Method		easy] (7			[hard] ()			sat [*] (28	
	#suc	avg fails	time	#suc	avg fails	time	#suc	avg fails	time
CNFA	370	2073	1.71	28	337194	282.35	85	249301	105.07
CNFS	370	1114	0.87	31	60956	56.49	65	220658	197.03
CNF _{A+S}	370	612	0.91	34	32711	36.52	77	190915	128.09
hybrid (VSIDS)	370	903	0.23	16	207211	286.32	35	177806	224.78
hybrid (VSIDS/Slot)	370	739	0.23	35	76256	64.52	37	204858	248.24
hybrid (Slot/VSIDS)	370	132	0.04	34	4568	2.50	37	234800	287.61
hybrid (Slot)	370	132	0.04	35	6304	3.75	23	174097	299.24
CP	370	43	0.03	35	57966	16.25	0	-	-
PBO-clauses	277	538743	236.94	0	-	-	43	175990	106.92
PBO-cutting planes	272	2149	52.62	0	-	-	1	5031	53.38

- Finding solutions quickly: Propagation is very important to find solutions quickly when they exist.
- For proving unsatisfiability: Clause learning is by far the most critical factor.

oham	

(3)

Publication

SAT and Hybrid Models of the Car-Sequencing problem Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger, Mohamed Siala, and Toby Walsh. In Integration of AI and OR Techniques in Constraint Programming - 11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014

(日) (同) (三) (三)

Outline

2 Background

3 Case Study: The Car-Sequencing Problem

- Propagation
- Search
- Learning

4 Learning in Disjunctive Scheduling

Conclusions & Perspectives

(日) (同) (三) (三)

Disjunctive Scheduling

A family of scheduling problems having in common the Unary Resource Constraint.

4 3 > 4 3

Disjunctive Scheduling

A family of scheduling problems having in common the Unary Resource Constraint.

Unary Resource Constraint [Grimes and Hebrard, 2015]

3 1 4

Disjunctive Scheduling

A family of scheduling problems having in common the Unary Resource Constraint.

Unary Resource Constraint [Grimes and Hebrard, 2015]

• Decomposition using the following DISJUNCTIVE constraints:

$$\delta_{kij} = \begin{cases} 0 \iff t_{ik} + p_{ik} \le t_{jk} \\ 1 \iff t_{jk} + p_{jk} \le t_{ik} \end{cases}$$
(1)

(3)

Disjunctive Scheduling

A family of scheduling problems having in common the Unary Resource Constraint.

Unary Resource Constraint [Grimes and Hebrard, 2015]

• Decomposition using the following DISJUNCTIVE constraints:

$$\delta_{kij} = \begin{cases} 0 \iff t_{ik} + p_{ik} \le t_{jk} \\ 1 \iff t_{jk} + p_{jk} \le t_{ik} \end{cases}$$
(1)

• • • • • • • • • • • •

Our Contributions

- Alternative lazy generation approach
- Novel conflict analysis scheme

<ロ> (日) (日) (日) (日) (日)

Standard Lazy Encoding

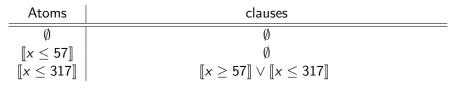
- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue

3 1 4

Standard Lazy Encoding

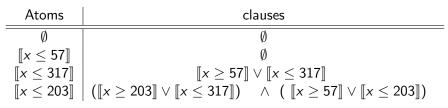
- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue

Example Atoms clauses Ø Ø


Standard Lazy Encoding

- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue

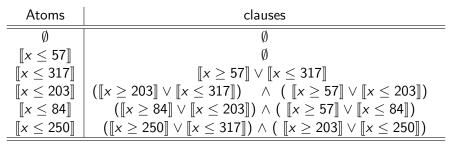
Atoms	clauses
Ø	Ø
$[X \leq 57]$	Ų


Standard Lazy Encoding

- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue

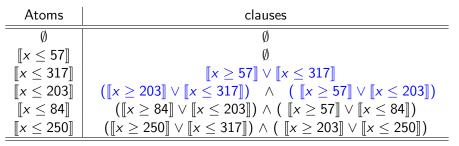
Standard Lazy Encoding

- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue

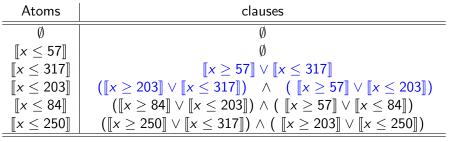

Standard Lazy Encoding

- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue

Atoms	clauses
Ø	Ø
$\llbracket x \le 57 \rrbracket$	Ø
$\llbracket x \le 317 \rrbracket$	$\llbracket x \geq 57 rbracket \lor \llbracket x \leq 317 rbracket$
$\llbracket x \le 203 \rrbracket$	$(\llbracket x \ge 203 rbracket \lor \llbracket x \le 317 rbracket) \land (\llbracket x \ge 57 rbracket \lor \llbracket x \le 203 rbracket)$
$\llbracket x \le 84 \rrbracket$	$(\llbracket x \geq 84 \rrbracket \lor \llbracket x \leq 203 \rrbracket) \land (\ \llbracket x \geq 57 \rrbracket \lor \llbracket x \leq 84 \rrbracket)$


Standard Lazy Encoding

- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue


Standard Lazy Encoding

- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue

Standard Lazy Encoding

- Generate atoms lazily when learning new clauses.
- Generate related domain clauses.
- There is a redundancy issue

O(k) redundant clauses

Avoiding the redundancy via DOMAINFAITHFULNESS

< □ > < 同 > < 回 > < Ξ > < Ξ

Avoiding the redundancy via DOMAINFAITHFULNESS

Key Idea

- Use a single constraint responsible for the consistency of the domain.
- Whenever an atom is generated, we update the internal structure of the constraint

Avoiding the redundancy via $\operatorname{DOMAINFAITHFULNESS}$

Key Idea

- Use a single constraint responsible for the consistency of the domain.
- Whenever an atom is generated, we update the internal structure of the constraint

Definition

DomainFaithfulness
$$(x, [b_1 \dots b_n], [v_1, \dots, v_n])$$
: $\forall i, b_i \leftrightarrow x \leq v_i$

Avoiding the redundancy via $\operatorname{DOMAINFAITHFULNESS}$

Key Idea

- Use a single constraint responsible for the consistency of the domain.
- Whenever an atom is generated, we update the internal structure of the constraint

Definition

DomainFaithfulness
$$(x, [b_1 \dots b_n], [v_1, \dots, v_n])$$
: $\forall i, b_i \leftrightarrow x \leq v_i$

Avoiding the redundancy via $\operatorname{DOMAINFAITHFULNESS}$

Key Idea

- Use a single constraint responsible for the consistency of the domain.
- Whenever an atom is generated, we update the internal structure of the constraint

Definition

$$\text{DomainFaithfulness}(x, [b_1 \dots b_n], [v_1, \dots, v_n]) : \forall i, b_i \leftrightarrow x \leq v_i$$

Arc consistency

Can be enforced in constant amortized time complexity $(\mathcal{O}(1))$ down a branch of the search tree

hamed	

$\operatorname{DISJUNCTIVE}\text{-}\mathsf{based}$ Learning

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

DISJUNCTIVE-based Learning

- Branch on the reified Boolean variables
- \rightarrow There exists an explanation for every bound literal $[x \le u]$

.

DISJUNCTIVE-based Learning

- Branch on the reified Boolean variables
- \rightarrow There exists an explanation for every bound literal $[x \le u]$

$\label{eq:dispersive} Disjunctive-based \ Learning$

Two phases:

- First UIP cut with a reified Boolean variable
- Apply resolution for every bound literal until having a nogood with only reified Boolean variables

DISJUNCTIVE-based Learning

- Branch on the reified Boolean variables
- \rightarrow There exists an explanation for every bound literal $[x \le u]$

$\label{eq:dispersive} Disjunctive-based \ Learning$

Two phases:

- First UIP cut with a reified Boolean variable
- Apply resolution for every bound literal until having a nogood with only reified Boolean variables
- \oplus No domain encoding
- \oplus Scheduling horizon does not manner in size
- \ominus Language of literals is restricted compared to standard approaches

< ロ > < 同 > < 三 > < 三

Experimental results

Protocol

- Mistral-Hybrid: new hybrid solver with
 - backward explanation
 - semantic reductions
 - lazy generation
 - DISJUNCTIVE-based learning

• https://github.com/siala/Hybrid-Mistral

Job Shop and Open Shop benchmarks

(B)

Experimental results: Job Shop

<ロ> (日) (日) (日) (日) (日)

Experimental results: Job Shop

Lawrence results

ſ	Mistra	(task)	Hybrid(vsids, disj)	Hybrid(vsids, lazy)	Hybrid((task, disj)	Hybrid((task, disj)
	Т	%0	Т	%0	Т	%0	Т	%0		%0
L	T 471.97	88.75	396.20	92	602.51	88	410.55	90.50	489.25	89

Taillard results

	Mistral(<i>task</i>)			Hybrid(vsids, disj)			Hybrid(vsids, lazy)			Hy	brid(ta	sk, disj)	Hy	Hybrid(task, lazy)		
		М	Size		М	Nodes/S		М	Nodes/S		М	1 Nodes/S		М	Nodes/S	
	%0	Т		%0	Т		%0	Т		%0	Т		%0	Т		
t01-10	90	616.22	8871.32	90	477.79	6814.73	87	999.17	1213.57	90	574.87	4869.45	85	1115.49	1261.70	
		PRD			P	RD	P		PRD	F		RD		P	RD	
t11-20	3.	2381	6509.44	3.	0350	3970.85	1.	8937	520.62	0.	4808	2715.29	0	.1169	539.79	
t21-30	0.	7302	3935.87	0.	2769	2424.16	0.	4756	413.90	0.	2485	1752.05	0	.1557	437.04	
t31-40	1.	7227	4503.78	0.	7109	2598.25	0.	3043	555.36	0.	6016	1517.04	0	.4103	566.18	
t41-50	2.	2161	2570.10	0.	4798	1530.42	0.	3036	413.48	0.	5420	994.61	0	.6163	443.63	
t51-60	2.	0798	1952.51	2.	2847	2602.31	2.	7990	562.71	0.	1621	1131	0	.2419	698.37	
t61-70	3.	2381	1349.73	3.	0350	2183.79	1.	8937	522.25	0.	4808	920.55	0	.1169	584.14	

• PRD: percentage relative deviation

Mohamed Siala

▲ ■ ▶ ■ つへへ May 2015 46 / 55

イロト イヨト イヨト イヨト

Experimental results: Summary

- \bullet 'Light' ${\rm CP}$ models are extremely efficient with small sized instances
- These models benefit essentially from the fast exploration speed
- The impact of clause learning is more and more glaring when the size of the instance grows
- DISJUNCTIVE-based learning outperforms the other models on medium sized instances

Experimental results: lower bounds experiments

イロト イヨト イヨト イヨト

Experimental results: lower bounds experiments

Open instances from Taillard benchmark

 \bullet 7 new bounds found with $\mathrm{DISJUNCTIVE}\textsc{-based}$ and VSIDS

tai13		.3	tai21		tai23		tai25		tai26		tai29		tai30	
nev	N	old	new	old										
130) 5 1	1282	1613	1573	1514	1474	1543	1518	1561	1558	1573	1525	1508	1485

• = • •

Experimental results: lower bounds experiments

Open instances from Taillard benchmark

 \bullet 7 new bounds found with $\mathrm{DISJUNCTIVE}\textsc{-based}$ and VSIDS

tai13		tai21		tai23		tai25		tai26		tai29		tai30	
new	old												
1305	1282	1613	1573	1514	1474	1543	1518	1561	1558	1573	1525	1508	1485
1342		1642		1518		1558		1591		1573		1519	

[Vilím et al., 2015]

- IBM CP-Optimizer studio
- 8h20min per instance
- Parallelization: Double threading phase
- Start search with best known bounds as an additional information.

Outline

- 2 Background
- 3 Case Study: The Car-Sequencing Problem
 - Propagation
 - Search
 - Learning

5 Conclusions & Perspectives

(日) (同) (三) (三)

• Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.

(3)

- Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.
- Case study: car-sequencing

- Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.
- Case study: car-sequencing
- Clause Learning in CP

- Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.
- Case study: car-sequencing
- Clause Learning in CP

Modern constraint programming solvers may not underestimate any of these three aspects

Future Research

- Car-Sequencing:
 - Application to 'real' industrial situations [Solnon et al., 2008].
- Propagation via ATMOSTSEQCARD:
 - Incrementality?
 - More extensions?
- Explanation for ATMOSTSEQCARD:
 - Minimal explanations?
 - Applications to other sequencing problems.
- Learning in Scheduling Problems:
 - Applications to other scheduling problems.
 - Learning with global constraints.
 - Hand-crafted learning.

▶ < 프 ► < 프 ►</p>

Thank you.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

References I

Beck, J. C. (2007).

Solution-guided multi-point constructive search for job shop scheduling. *Journal of Artificial Intelligence Research*, 29(1):49–77.

Geelen, P. A. (1992).

Dual viewpoint heuristics for binary constraint satisfaction problems.

In Proceedings of the 10th European Conference on Artificial Intelligence, ECAI'92, Vienna, Austria, pages 31–35.

Gottlieb, J., Puchta, M., and Solnon, C. (2003).

A study of greedy, local search, and ant colony optimization approaches for car sequencing problems.

In Proceedings of Applications of Evolutionary Computing, EvoWorkshop'03: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM, Essex, UK, pages 246–257.

Grimes, D. and Hebrard, E. (2015).

Solving Variants of the Job Shop Scheduling Problem through Conflict-Directed Search. *INFORMS Journal on Computing*.

Haralick, R. M. and Elliott, G. L. (1980).

Increasing tree search efficiency for constraint satisfaction problems.

Artificial Intelligence, 14(3):263 – 313.

(日) (周) (三) (三)

References II

Maher, M. J., Narodytska, N., Quimper, C., and Walsh, T. (2008). Flow-based propagators for the SEQUENCE and related global constraints. In Proceedings of the 14th International Conference on Principles and Practice of Constraint Programming, CP'08, Sydney, NSW, Australia, pages 159–174.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001). Chaff: Engineering an Efficient SAT Solver.

In Proceedings of the 38th Annual Design Automation Conference, DAC'01, Las Vegas, Nevada, USA, pages 530–535.

Régin, J. and Puget, J. (1997).
A Filtering Algorithm for Global Sequencing Constraints.
In Proceedings of the 3rd International Conference on Principles and Practice of Constraint Programming. CP'97. Linz. Austria. pages 32–46.

Siala, M., Hebrard, E., and Huguet, M. (2014). An optimal arc consistency algorithm for a particular case of sequence constraint. *Constraints*, 19(1):30–56.

Smith, B. M. (1996).

Succeed-first or Fail-first: A Case Study in Variable and Value Ordering. Research Report 96.26 University of Leeds, School of Computer Studies.

(日) (同) (日) (日) (日)

References III

Solnon, C., Cung, V., Nguyen, A., and Artigues, C. (2008). The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the roadef'2005 challenge problem. *European Journal of Operational Research*, 191(3):912–927.

van Hoeve, W. J., Pesant, G., Rousseau, L., and Sabharwal, A. (2009). New filtering algorithms for combinations of among constraints. *Constraints*, 14(2):273–292.

Vilím, P., Laborie, P., and Shaw, P. (2015).
Failure-directed Search for Constraint-based Scheduling.
In Proceedings of the 12th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR'15, Barcelona, Spain, page to appear.

(日) (同) (三) (三)