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Context

Context

Sequencing and Scheduling: the organization in time of of operations
subject to capacity and resource constraints.
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Context

Thesis overview

Constraint Programming: Search ⊕ Propagation

⊕ Learning

All these aspects are important and must all be taken into account in
order to design efficient solution methods
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Background

Definition

A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet P = (X ,D, C) where

X = [x1, . . . , xn]: finite set of variables

D: a domain for X
C: finite set of constraints

Constraint Satisfaction Problem (CSP): deciding whether a constraint
network has a solution or not

CSP is NP-Hard in general

Complete backtracking algorithms
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Background Search & Propagation

Search & Propagation

Search

Search: decisions to explore the search tree

Search in CP= variable ordering + value ordering

Standard or customized

Propagation

Propagation: inferences based on the current state

Constraint ↔ propagator

The level of pruning ↔ local consistency
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Background Learning

Learning
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Background Learning

Learning

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b ↔ (x9 − x4 = 14)∧
b → (x6 ≥ 7)∧
b → (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 30
x2 9 30
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 2 10
x8 9 30
x9 13 16
x9 13 16
x10 0 3
x11 15 25
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Background Learning

Learning in CP

Hybrid CP/SAT

Conflict Driven Clause Learning (CDCL) [Moskewicz et al., 2001]

Based on the notion of explanation
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Background Learning

Summary of the thesis

Modern CP-Solvers may not underestimate any of the three aspects:
search, propagation, and learning

Contributions

Propagation in a class of sequencing problems

Search in car-sequencing

Learning in car-sequencing

Revisiting lazy generation

Learning in disjunctive scheduling
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Case Study: The Car-Sequencing Problem

Outline

1 Context

2 Background

3 Case Study: The Car-Sequencing Problem
Propagation
Learning

4 Learning in Disjunctive Scheduling

5 Conclusions & Perspectives
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Case Study: The Car-Sequencing Problem

Car-Sequencing

ROADEF’05 challenge [Solnon et al., 2008]

RENAULT
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Case Study: The Car-Sequencing Problem

Problem Definition

A class of vehicles is defined by a set of options

Each class is associated to a demand

Capacity constraints: no subsequence of size q may contain more
than p vehicles requiring a given option

Is there a sequence of cars satisfying both demand and capacity
constraints?
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Case Study: The Car-Sequencing Problem Propagation

Outline

1 Context

2 Background

3 Case Study: The Car-Sequencing Problem
Propagation
Learning

4 Learning in Disjunctive Scheduling
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Case Study: The Car-Sequencing Problem Propagation

Propagation via AtMostSeqCard
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Case Study: The Car-Sequencing Problem Propagation

Propagation via AtMostSeqCard

Definition

AtMostSeqCard(p, q, d , [x1, . . . , xn])⇔

n−q∧
i=0

(

q∑
l=1

xi+l ≤ p) ∧ (
n∑

i=1

xi = d)

Example AtMostSeqCard(2, 5, 4, [x1, . . . , x9])

X1 X2 X3 X4 X5 X6 X7 X8 X9
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Case Study: The Car-Sequencing Problem Propagation

Arc Consistency on AtMostSeqCard

Definition

A constraint C is Arc Consistent (AC) iff for every x in the scope of C , for
every value v ∈ D(x) there exists an assignment w in D satisfying C in
which v is assigned to x

AtMostSeq⊕Cardinality is not enough

AtMostSeqCard as a particular case?

cost-Regular: O(2qn) [van Hoeve et al., 2009]

Gen-Sequence: O(n3) [van Hoeve et al., 2009]

Gen-Sequence: O(n2.log(n)) down a branch ⊕ initial compilation
of O(q.n2). [Maher et al., 2008].
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Case Study: The Car-Sequencing Problem Propagation

Arc Consistency on AtMostSeqCard

An example with AtMostSeqCard(4, 8, 12, [x1, . . . , x22])

. 0 . . . . . . 0 1 0 . . . . . . . . . . 1

. 0 . . . . . . 0 1 0 . . . . . . . . . 1
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. 0 . . . . . . 0 1 0 . . . . . . . . . 1
1 0 1 1 1 0 0 0 0 1 0 max added= 4

max added 5 1 1 0 0 0 0 1 1 1 1
Maximum possible 9 < residual demand

. 0 . . . . . . 0 1 0 1 . . . . . . . . . 1

Arc Consistency in O(n) time (optimal)

Extremely efficient in practice (Car-Sequencing + Crew Rostering)
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Case Study: The Car-Sequencing Problem Learning

Hybrid CP/SAT Models

Models based on AtMostSeqCard

We have to explain AtMostSeqCard

Explaining AtMostSeqCard?

Explain AtMostSeq and Cardinality

Explaining the extra filtering: consider the naive explanation, then try
to reduce it.

D : 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 . . . 1

D̂: 1 1 . . . . . . 1 1 . . . . 0 0 0 0 . 0 0 . . . 1
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Case Study: The Car-Sequencing Problem Learning

Experimental Results

CP, SAT, Hybrid CP/SAT models

Finding solutions quickly: Propagation is very important to find
solutions quickly when they exist.

For proving unsatisfiability: Clause learning is by far the most critical
factor.
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Disjunctive Scheduling
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Learning in Disjunctive Scheduling

Formulation

Unary Resource Constraint

Decomposition using the following Disjunctive constraints:

δkij =

{
0 ⇔ tik + pik ≤ tjk
1 ⇔ tjk + pjk ≤ tik

(1)
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Learning in Disjunctive Scheduling

Disjunctive-based Learning

Disjunctive-based Learning

Conflict analysis in two phases:

1 Standard 1-UIP cut

2 Apply resolution for every bound literal until having a nogood with
only reified Boolean variables

⊕ No domain encoding

⊕ Scheduling horizon does not manner in size

	 Language of literals is restricted compared to standard approaches

tai13 tai21 tai23 tai25 tai26 tai29 tai30
new old new old new old new old new old new old new old
1305 1282 1613 1573 1514 1474 1543 1518 1561 1558 1573 1525 1508 1485
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Conclusions & Perspectives

Summary

Contributions to each of the three aspects of constraint programming
that are ‘search’, ‘propagation’ and ‘learning’ for efficiently solving
sequencing and scheduling problems.

Case study: car-sequencing

Clause Learning in CP

Modern constraint programming solvers may not underestimate any of
these three aspects

Future Research

(Car-Sequencing) Application to ‘real’ industrial situations?

More extensions for AtMostSeqCard?

Hand crafted learning?
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Conclusions & Perspectives

Thank you for your attention!

Special thanks to my co-authors..
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