Centre for Data Analytics

Three generalizations of the FOCUS constraint

Nina Narodytska¹, Thierry Petit², Mohamed Siala³, Toby Walsh⁴

September 1, 2017

¹VMware Research, USA ²School of Business, Worcester Polytechnic Institute, Worcester, USA ³University College Cork, Ireland ⁴TU Berlin, UNSW, and Data61

- Three generalizations of the Focus constraint, IJCAI'13, August 2013, Beijing, China
- Three generalizations of the Focus constraint, CoRR abs/1304.5970 (2013)
- Three Generalizations of the Focus Constraint, Constraints. October 2016

FOCUS Constraint

Insight Centre for Data Analytics

• The concept of concentrating the high values in a sequence of variables to a small number of intervals

- The concept of concentrating the high values in a sequence of variables to a small number of intervals
- Useful for instance in cumulative scheduling problems where some excess of capacity can be tolerated to obtain a solution

- The concept of concentrating the high values in a sequence of variables to a small number of intervals
- Useful for instance in cumulative scheduling problems where some excess of capacity can be tolerated to obtain a solution
- In practice, excess might be tolerated by renting a new machine to produce more resource

FOCUS Constraint

Insight Centre for Data Analytics

$[x_0, ..., x_6]$ **3 4 3 1 3 4 2**

• Resource capacity (k): 2

$[x_0, ..., x_6]$ **3 4 3 1 3 4 2**

- Resource capacity (k): 2
- Number of subsequences with excess (y_c): 2
- Length of each subsequence bounded (len): 3

FOCUS Constraint

- $X = [x_0, x_1, \dots, x_{n-1}]$: a sequence of integer variables
- $s_{i,j} = [i, i+1, \dots, j], 0 \le i \le j < n.$
- len, k: integers
- *y_c*: integer variable

FOCUS Constraint

- $X = [x_0, x_1, \dots, x_{n-1}]$: a sequence of integer variables
- $s_{i,j} = [i, i+1, \dots, j], 0 \le i \le j < n.$
- len, k: integers
- *y_c*: integer variable

Definition

FOCUS(X, y_c, len, k) iff there exists a set S_X of *disjoint* sequences of indices $s_{i,j}$ such that three conditions are all satisfied:

1.
$$|S_X| \le y_c$$

2. $\forall x_l \in X, x_l > k \Leftrightarrow \exists s_{i,j} \in S_X \text{ such that } l \in s_{i,j}$
3. $\forall s_{i,j} \in S_X, j - i + 1 \le len$

$[x_0, ..., x_6]$ **3 4 3 1 3 4 2**

- Resource capacity (k): 2
- Number of subsequences with excess (y_c): 2
- Length of each subsequence bounded (len): 3
- Focus(*X*, [2, 2], 3, 2) is satisfied

- Resource R with capacity k=3
- [x₀, ..., x₉] to model the amount of consumed capacity at day *i*

FOCUS is great, but..

- Resource R with capacity k=3
- [x₀, ..., x₉] to model the amount of consumed capacity at day *i*

 $[x_0, ..., x_9]$: 4 2 4 2 2 0 0 0 0 0

- Resource R with capacity k=3
- [x₀, ..., x₉] to model the amount of consumed capacity at day *i*

 $[x_0, ..., x_9]: 4 2 4 2 2 0 0 0 0 0$

• A new activity to schedule that requires 5 days and consumes 2 units each day

FOCUS is great, but..

- Resource R with capacity k=3
- [x₀, ..., x₉] to model the amount of consumed capacity at day *i*

$$[x_0, ..., x_9]$$
: 4 2 4 2 2 0 0 0 0 0

• A new activity to schedule that requires 5 days and consumes 2 units each day

- Resource R with capacity k=3
- [x₀, ..., x₉] to model the amount of consumed capacity at day *i*

 $[x_0, ..., x_9]$: 4 2 4 2 2 0 0 0 0 0

• A new activity to schedule that requires 5 days and consumes 2 units each day

WEIGHTEDFOCUS

- Resource R with capacity k=3
- [x₀, ..., x₉] to model the amount of consumed capacity at day *i*

$$[x_0, ..., x_9]$$
: 4 2 4 2 2 0 0 0 0 0

• A new activity to schedule that requires 5 days and consumes 2 units each day

- WEIGHTEDFOCUS
- SpringyFocus

- Resource R with capacity k=3
- [x₀, ..., x₉] to model the amount of consumed capacity at day *i*

$$[x_0, ..., x_9]$$
: 4 2 4 2 2 0 0 0 0 0

• A new activity to schedule that requires 5 days and consumes 2 units each day

- WEIGHTEDFOCUS
- SPRINGYFOCUS
- WEIGHTEDSPRINGYFOCUS

SPRINGYFOCUS

Definition

SPRINGYFOCUS(X, y_c, len, h, k) iff there exists a set S_X of *disjoint* sequences of indices $s_{i,j}$ such that four conditions are all satisfied:

1.
$$|S_X| \leq y_c$$

2. $\forall x_l \in X, x_l > k \Rightarrow \exists s_{i,j} \in S_X \text{ such that } l \in s_{i,j}$
3. $\forall s_{i,j} \in S_X, j - i + 1 \leq len, x_i > k \text{ and } x_j > k.$
4. $\forall s_{i,j} \in S_X, |\{l \in s_{i,j}, x_l \leq k\}| \leq h$

WEIGHTEDFOCUS

Definition

WEIGHTEDFOCUS(X, y_c, len, k, z_c) iff there exists a set S_X of *disjoint* sequences of indices $s_{i,j}$ such that four conditions are all satisfied:

1.
$$|S_X| \leq y_c$$

2. $\forall x_l \in X, x_l > k \Leftrightarrow \exists s_{i,j} \in S_X \text{ such that } l \in s_{i,j}$
3. $\forall s_{i,j} \in S_X, j - i + 1 \leq len$
4. $\sum_{s_{i,j} \in S_X} |s_{i,j}| \leq z_c$.

WEIGHTEDSPRINGYFOCUS

Definition

WEIGHTEDSPRINGYFOCUS(X, y_c, len, h, k, z_c) iff there exists a set S_X of *disjoint* sequences of indices $s_{i,j}$ such that five conditions are all satisfied:

1.
$$|S_X| \leq y_c$$

2. $\forall x_l \in X, x_l > k \Rightarrow \exists s_{i,j} \in S_X$ such that $l \in s_{i,j}$
3. $\forall s_{i,j} \in S_X, |\{l \in s_{i,j}, x_l \leq k\}| \leq h$
4. $\forall s_{i,j} \in S_X, j - i + 1 \leq len, x_i > k \text{ and } x_j > k.$
5. $\sum_{s_{i,j} \in S_X} |s_{i,j}| \leq z_c.$

• BC algorithm for SPRINGYFOCUS O(n) time

- BC algorithm for SPRINGYFOCUS O(n) time
- BC algorithm for WEIGHTEDFOCUS in $O(n \max(z_c))$ time

- BC algorithm for SPRINGYFOCUS O(n) time
- BC algorithm for WEIGHTEDFOCUS in $O(n \max(z_c))$ time
- BC algorithm for WEIGHTEDSPRINGYFOCUS in O(nmax(z_c)) time

- BC algorithm for SPRINGYFOCUS O(n) time
- BC algorithm for WEIGHTEDFOCUS in $O(n \max(z_c))$ time
- BC algorithm for WEIGHTEDSPRINGYFOCUS in O(nmax(z_c)) time
- But also:
 - ILP formulation for SPRINGYFOCUS (*O*(*n*²) time):

- BC algorithm for SPRINGYFOCUS O(n) time
- BC algorithm for WEIGHTEDFOCUS in $O(n \max(z_c))$ time
- BC algorithm for WEIGHTEDSPRINGYFOCUS in O(nmax(z_c)) time
- But also:
 - ILP formulation for SPRINGYFOCUS ($O(n^2)$ time):
 - Decomposition for WEIGHTEDFOCUS based on FOCUS

- BC algorithm for SPRINGYFOCUS O(n) time
- BC algorithm for WEIGHTEDFOCUS in $O(n \max(z_c))$ time
- BC algorithm for WEIGHTEDSPRINGYFOCUS in O(nmax(z_c)) time
- But also:
 - ILP formulation for SPRINGYFOCUS ($O(n^2)$ time):
 - Decomposition for WEIGHTEDFOCUS based on FOCUS
 - Decomposition of WEIGHTEDSPRINGYFOCUS based on GCC

Finding a (bound) support

Based on a Dynamic program

Finding a (bound) support

- Based on a Dynamic program
- For each prefix of variables [x₀, x₁,..., x_j], we consider the construction of a "solution" S_{c,j} to WEIGHTEDFOCUS restricted to [x₀, x₁,..., x_j] of cost c + NB₁.

Finding a (bound) support

- Based on a Dynamic program
- For each prefix of variables [x₀, x₁,..., x_j], we consider the construction of a "solution" S_{c,j} to WEIGHTEDFOCUS restricted to [x₀, x₁,..., x_j] of cost c + NB₁.
- It turns out that from $S_{c,j}$, one can construct $S_{c,j+1}$ and $S_{c+1,j+1}$.

• *S_{c,j}* is a set of subsequences

- *S_{c,j}* is a set of subsequences
- *last*(*S_{c,j}*): the last sequence in *S_{c,j}*

- *S_{c,j}* is a set of subsequences
- *last*(*S_{c,j}*): the last sequence in *S_{c,j}*
- A variable $x_l \in X$ is:
 - Penalizing, (P_k) , iff min $(x_l) > k$.
 - Neutral, (N_k) , iff max $(x_l) \leq k$.
 - Undetermined, (*U_k*), otherwise.

- *S_{c,j}* is a set of subsequences
- *last*(S_{c,j}): the last sequence in S_{c,j}
- A variable $x_l \in X$ is:
 - Penalizing, (P_k) , iff min $(x_l) > k$.
 - Neutral, (N_k) , iff max $(x_l) \leq k$.
 - Undetermined, (U_k) , otherwise.
- Dynamic programming table f, where $f_{c,j} = \{q_{c,j}, l_{c,j}\}$,
- $q_{c,j} = |S_{c,j}|$
- *I_{c,j}* = |*Iast*(*S_{c,j}*)|

Dynamic Programming

Example

• Failure triggering

- Failure triggering
- We compute a similar table *b* on the reverse sequence

- Failure triggering
- We compute a similar table *b* on the reverse sequence
- To check a support for $x_i = v$, v > k, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 + 1 \le z_c^U$.

- Failure triggering
- We compute a similar table *b* on the reverse sequence
- To check a support for $x_i = v$, v > k, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 + 1 \le z_c^U$.
- To check a support for $x_i = v$, $v \le k$, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 \le z_c^U$.

- Failure triggering
- We compute a similar table *b* on the reverse sequence
- To check a support for $x_i = v$, v > k, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 + 1 \le z_c^U$.
- To check a support for $x_i = v$, $v \le k$, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 \le z_c^U$.
- Complexity: $O(n \max(z_c))$ time

• Purpose: evaluate propagators with decompositions

- Purpose: evaluate propagators with decompositions
- Only WEIGHTEDFOCUS and WEIGHTEDSPRINGYFOCUS

- Purpose: evaluate propagators with decompositions
- Only WEIGHTEDFOCUS and WEIGHTEDSPRINGYFOCUS
- Implemented in choco 2.1.5

- Purpose: evaluate propagators with decompositions
- Only WEIGHTEDFOCUS and WEIGHTEDSPRINGYFOCUS
- Implemented in choco 2.1.5
 - Sports league scheduling
 - Cumulative scheduling with rentals
 - Sorting chords

• Given a horizon of *n* days and a set of time intervals $[s_i, e_i], i \in \{1, 2, \dots, p\}$

- Given a horizon of *n* days and a set of time intervals $[s_i, e_i], i \in \{1, 2, \dots, p\}$
- Rent a machine between *I_i* and *u_i* times within each time interval [*s_i*, *e_i*].

- Given a horizon of *n* days and a set of time intervals $[s_i, e_i], i \in \{1, 2, ..., p\}$
- Rent a machine between *I_i* and *u_i* times within each time interval [*s_i*, *e_i*].
- The cost of the rental period is proportional to its length

- Given a horizon of *n* days and a set of time intervals $[s_i, e_i], i \in \{1, 2, \dots, p\}$
- Rent a machine between *I_i* and *u_i* times within each time interval [*s_i*, *e_i*].
- The cost of the rental period is proportional to its length
- Each time the machine is rented we pay a fixed cost

- Given a horizon of *n* days and a set of time intervals $[s_i, e_i], i \in \{1, 2, \dots, p\}$
- Rent a machine between *I_i* and *u_i* times within each time interval [*s_i*, *e_i*].
- The cost of the rental period is proportional to its length
- Each time the machine is rented we pay a fixed cost
- Minimize simultaneously the number of rental periods and their total length

- Given a horizon of *n* days and a set of time intervals $[s_i, e_i], i \in \{1, 2, \dots, p\}$
- Rent a machine between *I_i* and *u_i* times within each time interval [*s_i*, *e_i*].
- The cost of the rental period is proportional to its length
- Each time the machine is rented we pay a fixed cost
- Minimize simultaneously the number of rental periods and their total length

CP Model

- $\forall d \in 1..m, \ l[d] \leq \sum_{i=s[d]}^{i=e[d]} X[i] \leq u[d];$
- WEIGHTEDSPRINGYFOCUS(X, y_c, len, h, 0, z_c);

- Pareto frontier over two cost variables
- First minimizing y_c, then immediately minimize z_c while fixing y_c to its minimum
- Increment *y_c* by 1 and repeat the same process

Pareto Frontier

Conclusions & Future Research

- Three generalizations of the Focus Constraint
- Complete filtering in polynomial time
- Flexible tools to capture the concept of concentrating costs
- There is a fourth extension of Focus (perhaps later in the session?)

Thank you