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FOCUS Constraint

• The concept of concentrating the high values in a
sequence of variables to a small number of intervals

• Useful for instance in cumulative scheduling problems
where some excess of capacity can be tolerated to obtain
a solution

• In practice, excess might be tolerated by renting a new
machine to produce more resource
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FOCUS Constraint

[x0, .., x6] 3 4 3 1 3 4 2

• Resource capacity (k ): 2

• Number of subsequences with excess (yc ): 2

• Length of each subsequence bounded (len): 3
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FOCUS Constraint

• X = [x0, x1, . . . , xn−1]: a sequence of integer variables

• si,j = [i , i + 1, . . . , j], 0 ≤ i ≤ j < n.
• len, k : integers
• yc : integer variable

Definition
FOCUS(X , yc , len, k ) iff there exists a set SX of disjoint
sequences of indices si,j such that three conditions are all
satisfied:

1. |SX | ≤ yc

2. ∀xl ∈ X , xl > k ⇔ ∃si,j ∈ SX such that l ∈ si,j

3. ∀si,j ∈ SX , j − i + 1 ≤ len
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FOCUS Constraint

[x0, .., x6] 3 4 3 1 3 4 2

• Resource capacity (k ): 2

• Number of subsequences with excess (yc ): 2

• Length of each subsequence bounded (len): 3
• FOCUS(X , [2,2],3,2) is satisfied
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FOCUS is great, but..

• Resource R with capacity k=3

• [x0, .., x9] to model the amount of consumed capacity at
day i

[x0, .., x9]: 4 2 4 2 2 0 0 0 0 0

• A new activity to schedule that requires 5 days and
consumes 2 units each day

[x0, .., x9] 4 4 6 4 4 2 0 0 0 0

[x0, .., x9]: 4 2 4 2 2 2 2 2 2 2

• WEIGHTEDFOCUS

• SPRINGYFOCUS

• WEIGHTEDSPRINGYFOCUS
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SPRINGYFOCUS

Definition
SPRINGYFOCUS(X , yc , len, h, k ) iff there exists a set SX of
disjoint sequences of indices si,j such that four conditions are
all satisfied:

1. |SX | ≤ yc

2. ∀xl ∈ X , xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j

3. ∀si,j ∈ SX , j − i + 1 ≤ len, xi > k and xj > k .
4. ∀si,j ∈ SX , |{l ∈ si,j , xl ≤ k}| ≤ h
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WEIGHTEDFOCUS

Definition
WEIGHTEDFOCUS(X , yc , len, k , zc) iff there exists a set SX of
disjoint sequences of indices si,j such that four conditions are
all satisfied:

1. |SX | ≤ yc

2. ∀xl ∈ X , xl > k ⇔ ∃si,j ∈ SX such that l ∈ si,j

3. ∀si,j ∈ SX , j − i + 1 ≤ len
4.

∑
si,j∈SX

|si,j | ≤ zc .
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WEIGHTEDSPRINGYFOCUS

Definition
WEIGHTEDSPRINGYFOCUS(X , yc , len,h, k , zc) iff there exists a
set SX of disjoint sequences of indices si,j such that five
conditions are all satisfied:

1. |SX | ≤ yc

2. ∀xl ∈ X , xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j

3. ∀si,j ∈ SX , |{l ∈ si,j , xl ≤ k}| ≤ h
4. ∀si,j ∈ SX , j − i + 1 ≤ len, xi > k and xj > k .
5.

∑
si,j∈SX

|si,j | ≤ zc .
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Contributions

• BC algorithm for SPRINGYFOCUS O(n) time

• BC algorithm for WEIGHTEDFOCUS in O(n max(zc)) time

• BC algorithm for WEIGHTEDSPRINGYFOCUS in
O(n max(zc)) time

• But also:
• ILP formulation for SPRINGYFOCUS (O(n2) time):
• Decomposition for WEIGHTEDFOCUS based on FOCUS
• Decomposition of WEIGHTEDSPRINGYFOCUS based on

GCC
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Filtering for WEIGHTEDFOCUS

Finding a (bound) support

• Based on a Dynamic program

• For each prefix of variables [x0, x1, . . . , xj ], we consider the
construction of a "solution" Sc,j to WEIGHTEDFOCUS

restricted to [x0, x1, . . . , xj ] of cost c + NB1.

• It turns out that from Sc,j , one can construct Sc,j+1 and
Sc+1,j+1.
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Filtering for WEIGHTEDFOCUS

• Sc,j is a set of subsequences

• last(Sc,j): the last sequence in Sc,j

• A variable xl ∈ X is:
• Penalizing, (Pk ), iff min(xl) > k .
• Neutral, (Nk ), iff max(xl) ≤ k .
• Undetermined, (Uk ), otherwise.

• Dynamic programming table f , where fc,j = {qc,j , lc,j},
• qc,j = |Sc,j |
• lc,j = |last(Sc,j)|
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Dynamic Programming
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Example

D(x0) D(x1) D(x2) D(x3) D(x4) D(x5) D(x6) D(x7)
c [1,1] [0,1] [1,1] [1,1] [0,1] [1,1] [0,1] [1,1]
0 {1,1}{1,∞}{2,1} {2,2} {2,∞} {3,1} {3,∞} {4,1}
1 {1,2} {1,3} {1,4} {1,∞} {2,1} {2,∞} {3,1}

zU
c = 2 {1,5} {2,1} {2,2} {2,3}
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Bound Consistency

• Failure triggering

• We compute a similar table b on the reverse sequence

• To check a support for xi = v , v > k , for each fc1,i−1 it is
sufficient to consider only one element bc2,n−i−2 such that
bc2,n−i−2 is non-dummy and c2 is the maximum value that
satisfies inequality c1 + c2 + 1 ≤ zU

c .

• To check a support for xi = v , v ≤ k , for each fc1,i−1 it is
sufficient to consider only one element bc2,n−i−2 such that
bc2,n−i−2 is non-dummy and c2 is the maximum value that
satisfies inequality c1 + c2 ≤ zU

c .

• Complexity: O(n max(zc)) time
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Empirical Results

• Purpose: evaluate propagators with decompositions

• Only WEIGHTEDFOCUS and WEIGHTEDSPRINGYFOCUS

• Implemented in choco 2.1.5

• Sports league scheduling
• Cumulative scheduling with rentals
• Sorting chords
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Cumulative Scheduling with Rentals

• Given a horizon of n days and a set of time intervals
[si ,ei ], i ∈ {1,2, . . . ,p}

• Rent a machine between li and ui times within each time
interval [si ,ei ].

• The cost of the rental period is proportional to its length

• Each time the machine is rented we pay a fixed cost

• Minimize simultaneously the number of rental periods
and their total length

CP Model

• ∀d ∈ 1..m, l[d ] ≤
∑i=e[d ]

i=s[d ] X [i] ≤ u[d ];

• WEIGHTEDSPRINGYFOCUS(X, yc , len, h, 0, zc);
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• Each time the machine is rented we pay a fixed cost

• Minimize simultaneously the number of rental periods
and their total length

CP Model

• ∀d ∈ 1..m, l[d ] ≤
∑i=e[d ]

i=s[d ] X [i] ≤ u[d ];

• WEIGHTEDSPRINGYFOCUS(X, yc , len, h, 0, zc);
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Cumulative Scheduling with Rentals

• Pareto frontier over two cost variables

• First minimizing yc , then immediately minimize zc while
fixing yc to its minimum

• Increment yc by 1 and repeat the same process
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Pareto Frontier
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Conclusions & Future Research

• Three generalizations of the Focus Constraint

• Complete filtering in polynomial time

• Flexible tools to capture the concept of concentrating
costs

• There is a fourth extension of Focus (perhaps later in the
session?)
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Thank you
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