Centre for Data Analytics

Insight Centre for Data Analytics

Rotation-Based Formulation for Stable Matching

Mohamed Siala, Barry O'Sullivan

November 10, 2017

Insight Centre for Data Analytics

• They are everywhere! (doctors to hospitals, students to universities, kidney exchange, etc)

- They are everywhere! (doctors to hospitals, students to universities, kidney exchange, etc)
- Stability is the most desired property

- They are everywhere! (doctors to hospitals, students to universities, kidney exchange, etc)
- *Stability* is the most desired property
- Modularity & Flexibility of CP to solve hard problems?

- They are everywhere! (doctors to hospitals, students to universities, kidney exchange, etc)
- *Stability* is the most desired property
- Modularity & Flexibility of CP to solve hard problems?
- Global constraints for stable matching problems?

Insight Centre for Data Analytics

- Assign man to woman
- Every woman has a personnel preference over men
- Every man has a preference list over woman
- Every man/woman is assigned to at most one partner from the opposite sex

- Assign residents to hospitals
- Every resident has a personnel preference over hospitals
- Each hospital has a preference list over residents
- each hospital has a capacity

- Assign students to universities
- Every student has a personnel preference over universities
- Each university has a preference list over students
- each university has a capacity

- Assign workers to firms
- Every worker has a preference list over firms
- Every firm has a preference list over workers
- Every worker w is assigned to a number n_w of firms
- Every firm f is assigned to a number n_f of workers

Context

- Two sets of agents
- Two sided preferences (complete or incomplete)
- Stable matching *M*:
 - Capacity constraints satisfied
 - There exists no pair of agents that prefer each other to their situation in *M*
- Eventually one can have side constraints

Insight Centre for Data Analytics

• $W = \{w_1, w_2, \dots, w_{n_W}\}$: a set of workers

- $W = \{w_1, w_2, \dots, w_{n_W}\}$: a set of workers
- $F = \{f_1, f_2, ..., f_{n_F}\}$: a set of firms
- Each agent has a preference list over agents of the other set

- $W = \{w_1, w_2, \dots, w_{n_W}\}$: a set of workers
- $F = \{f_1, f_2, ..., f_{n_F}\}$: a set of firms
- Each agent has a preference list over agents of the other set
- Each agent has a quota

- $W = \{w_1, w_2, \dots, w_{n_W}\}$: a set of workers
- $F = \{f_1, f_2, ..., f_{n_F}\}$: a set of firms
- Each agent has a preference list over agents of the other set
- Each agent has a quota
- A matching *M* is a set of acceptable pairs

- $W = \{w_1, w_2, \dots, w_{n_W}\}$: a set of workers
- $F = \{f_1, f_2, ..., f_{n_F}\}$: a set of firms
- Each agent has a preference list over agents of the other set
- Each agent has a quota
- A matching *M* is a set of acceptable pairs
- M is stable if the quota constraints are respected and no pair (w, f) has an incentive to deviate from M by being matched together

- $W = \{w_1, w_2, \dots, w_{n_W}\}$: a set of workers
- $F = \{f_1, f_2, ..., f_{n_F}\}$: a set of firms
- Each agent has a preference list over agents of the other set
- Each agent has a quota
- A matching *M* is a set of acceptable pairs
- M is stable if the quota constraints are respected and no pair (w, t) has an incentive to deviate from M by being matched together
- Solvable in O(L) time
- NP-Hard variants with side constraints

Example

w ₀	0652413	f_0	2164530
w ₁	6145023	f_1	0435261
<i>w</i> ₂	6031542	f_2	2504316
W3	3201465	f_3	6123405
W4	1203456	f_4	4605312
W5	6103542	f_5	3126540
W ₆	2506431	f_6	4621305

Insight Centre for Data Analytics

Dominance Relation on Stable Matchings

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 4 \rangle, \langle 6, 0 \rangle$

- M_1 : $\langle 0, 2 \rangle, \langle 1, 4 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 0 \rangle, \langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 4 \rangle, \langle 6, 0 \rangle$

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 4 \rangle, \langle 6, 0 \rangle$

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 4 \rangle, \langle 6, 0 \rangle$

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle$, $\langle 1, 5 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 4 \rangle$, $\langle 6, 0 \rangle$

• The sequence $\rho_1 = [\langle 1, 4 \rangle, \langle 5, 0 \rangle, \langle 6, 5 \rangle]$ is called a rotation

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle$, $\langle 1, 5 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 4 \rangle$, $\langle 6, 0 \rangle$

- The sequence $\rho_1 = [\langle 1, 4 \rangle, \langle 5, 0 \rangle, \langle 6, 5 \rangle]$ is called a rotation
- $\langle \mathbf{1},\mathbf{4} \rangle$ is eliminated by ho_1

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle$, $\langle 1, 5 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 4 \rangle$, $\langle 6, 0 \rangle$

- The sequence $\rho_1 = [\langle 1, 4 \rangle, \langle 5, 0 \rangle, \langle 6, 5 \rangle]$ is called a rotation
- $\langle \mathbf{1},\mathbf{4}
 angle$ is eliminated by ho_1
- $\langle \mathbf{1}, \mathbf{5} \rangle$ is produced by ρ_1

A Partial Order on Rotations

$\rho_1 \prec \prec \rho_2$

 ρ₁ precedes ρ₂ if ρ₁ has to be applied before ρ₂ in every
 succession of rotation eliminations leading from M₀ to
 M_z.

The Partial Order on Rotations

Graph Poset

Closed Subset

Insight Centre for Data Analytics

Closed Subset

Theorem [Gusfield and Irving, 1989, Bansal et al., 2007] There is a one-to-one mapping between closed subsets and stable matchings

Important Notions & Properties

Insight Centre for Data Analytics

• A pair is stable when it belongs to a stable matching

- A pair is stable when it belongs to a stable matching
- Some pairs are non-stable

- A pair is stable when it belongs to a stable matching
- Some pairs are non-stable
- Some pairs are fixed

- A pair is stable when it belongs to a stable matching
- Some pairs are non-stable
- Some pairs are fixed
- Every non-fixed stable pair ⟨w, f⟩ ∉ M_z can be eliminated by a unique rotation ρ_{ewf}
- Every non-fixed stable pair ⟨w, f⟩ ∉ M₀ can be produced by a unique rotation ρ_{pwf}

- A pair is stable when it belongs to a stable matching
- Some pairs are non-stable
- Some pairs are fixed
- Every non-fixed stable pair ⟨w, f⟩ ∉ M_z can be eliminated by a unique rotation ρ_{e_{wf}}
- Every non-fixed stable pair ⟨w, f⟩ ∉ M₀ can be produced by a unique rotation ρ_{pwf}
- In *O*(*L*) time, one can compute:
 - M_0, M_z
 - The fixed, stable and non-stable pairs
 - The set of rotations
 - The graph poset
 - $\rho_{e_{wf}}$ and $\rho_{p_{wf}}$

• Let *M* be a stable matching and *S* its closed subset

- Let *M* be a stable matching and *S* its closed subset
- Let $\langle w_i, f_j \rangle$ be a stable pair

- Let *M* be a stable matching and *S* its closed subset
- Let $\langle w_i, f_j \rangle$ be a stable pair
 - 1. If $\langle w_i, f_j \rangle \in M_0$, then $\langle w_i, f_j \rangle \in M$ iff $\rho_{e_{ij}} \notin S$.

- Let *M* be a stable matching and *S* its closed subset
- Let $\langle w_i, f_j \rangle$ be a stable pair
 - 1. If $\langle w_i, f_j \rangle \in M_0$, then $\langle w_i, f_j \rangle \in M$ iff $\rho_{e_{ij}} \notin S$.
 - 2. Else, if $\langle w_i, f_j \rangle \in M_z$, then $\langle w_i, f_j \rangle \in M$ iff $\rho_{\rho_{ij}} \in S$.

- Let *M* be a stable matching and *S* its closed subset
- Let $\langle w_i, f_j \rangle$ be a stable pair
 - 1. If $\langle w_i, f_j \rangle \in M_0$, then $\langle w_i, f_j \rangle \in M$ iff $\rho_{e_{ij}} \notin S$.
 - 2. Else, if $\langle w_i, f_j \rangle \in M_z$, then $\langle w_i, f_j \rangle \in M$ iff $\rho_{\rho_{ij}} \in S$.
 - 3. Otherwise, $\langle w_i, f_j \rangle \in M$ iff $\rho_{\rho_{ij}} \in S \land \rho_{e_{ij}} \notin S$.

Insight Centre for Data Analytics

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k
- Constraints
 - Closed Subset: $\forall \rho_1 \prec \prec \rho_2$: $r_2 \implies r_1$

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k
- Constraints
 - Closed Subset: $\forall \rho_1 \prec \prec \rho_2$: $r_2 \implies r_1$
 - $\forall \langle w_i, f_j \rangle$:

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k
- Constraints
 - Closed Subset: $\forall \rho_1 \prec \prec \rho_2$: $r_2 \implies r_1$
 - $\forall \langle w_i, f_j \rangle$:

1. if $\langle w_i, f_j \rangle \in FP : x_{i,j}$

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k
- Constraints
 - Closed Subset: $\forall \rho_1 \prec \prec \rho_2$: $r_2 \implies r_1$
 - $\forall \langle w_i, f_j \rangle$:
 - 1. if $\langle w_i, f_j \rangle \in FP : x_{i,j}$
 - 2. Else if $\langle w_i, f_j \rangle \in NSP : \neg x_{i,j}$

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k
- Constraints
 - Closed Subset: $\forall \rho_1 \prec \prec \rho_2$: $r_2 \implies r_1$
 - $\forall \langle w_i, f_j \rangle$:
 - 1. if $\langle w_i, f_j \rangle \in FP : x_{i,j}$
 - 2. Else if $\langle w_i, f_j \rangle \in NSP : \neg x_{i,j}$
 - 3. Else if $\langle w_i, f_j \rangle \in M_0$, then $x_{i,j} == \neg r_{e_{ij}}$

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k
- Constraints
 - Closed Subset: $\forall \rho_1 \prec \prec \rho_2$: $r_2 \implies r_1$
 - $\forall \langle w_i, f_j \rangle$:
 - 1. if $\langle w_i, f_j \rangle \in FP : x_{i,j}$
 - 2. Else if $\langle w_i, f_j \rangle \in NSP : \neg x_{i,j}$
 - 3. Else if $\langle w_i, f_j \rangle \in M_0$, then $x_{i,j} = \neg r_{e_{ij}}$
 - 4. Else, if $\langle w_i, f_j \rangle \in M_z$, then $x_{i,j} == r_{p_{ij}}$

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k
- Constraints
 - Closed Subset: $\forall \rho_1 \prec \prec \rho_2$: $r_2 \implies r_1$
 - $\forall \langle w_i, f_j \rangle$:
 - 1. if $\langle w_i, f_j \rangle \in FP : x_{i,j}$
 - 2. Else if $\langle w_i, f_j \rangle \in NSP : \neg x_{i,j}$
 - 3. Else if $\langle w_i, f_j \rangle \in M_0$, then $x_{i,j} = \neg r_{e_{ij}}$
 - 4. Else, if $\langle w_i, f_j \rangle \in M_z$, then $x_{i,j} == r_{p_{ij}}$
 - 5. Otherwise, $x_{i,j} == r_{\rho_{ij}} \land \neg r_{e_{ij}}$

- Variables
 - A Boolean variable $x_{i,j}$ for every pair $\langle w_i, f_j \rangle$
 - A Boolean variable r_k for every rotation ρ_k
- Constraints
 - Closed Subset: $\forall \rho_1 \prec \prec \rho_2$: $r_2 \implies r_1$
 - $\forall \langle w_i, f_j \rangle$:
 - 1. if $\langle w_i, f_j \rangle \in FP : x_{i,j}$
 - 2. Else if $\langle w_i, f_j \rangle \in NSP : \neg x_{i,j}$
 - 3. Else if $\langle w_i, f_j \rangle \in M_0$, then $x_{i,j} = \neg r_{e_{ij}}$
 - 4. Else, if $\langle w_i, f_j \rangle \in M_z$, then $x_{i,j} == r_{p_{ij}}$
 - 5. Otherwise, $x_{i,j} == r_{p_{ij}} \land \neg r_{e_{ij}}$

• Easily translated in SAT (Г)

Insight Centre for Data Analytics

• Let $M2M(I, \mathcal{X}(M2M))$ be the stable matching constraint

- Let $M2M(I, \mathcal{X}(M2M))$ be the stable matching constraint
- Unit propagation on Γ does not maintain arc consistency

- Let M2M(I, X(M2M)) be the stable matching constraint
- Unit propagation on Γ does not maintain arc consistency
- Theorem: Let D be a domain such that unit propagation is performed without failure on Γ. There exists at least a solution in D that satisfies Γ.

Insight Centre for Data Analytics

We know that..

• Unit Propagation takes O(L) time

We know that..

- Unit Propagation takes O(L) time
- We know that two-watched literals does not need reversible data structures

We know that..

- Unit Propagation takes O(L) time
- We know that two-watched literals does not need reversible data structures

Arc Consistency

- Idea: use unit propagation as a support check
- Some assignments already have supports
- *O*(*L*²) time

Insight Centre for Data Analytics

- Let *M* be a stable marriage
 - C_M^m is the sum of the ranks of each man's partner
 - C_M^{w} is the sum of the ranks of each woman's partner

- Let *M* be a stable marriage
 - C_M^m is the sum of the ranks of each man's partner
 - C_M^{w} is the sum of the ranks of each woman's partner
- Sex-Equal Stable matching: find a stable matching M with the minimum value of |C^m_M - C^w_M|

- Let *M* be a stable marriage
 - C_M^m is the sum of the ranks of each man's partner
 - C^w_M is the sum of the ranks of each woman's partner
- Sex-Equal Stable matching: find a stable matching M with the minimum value of |C^m_M - C^w_M|
- Balanced stable matching: find a stable matching M with the minimum value of max{C^m_M, C^w_M}

Experimental Protocol

Insight Centre for Data Analytics

Experimental Protocol

- Models:
 - fr: SAT-formula
 - ac: Arc Consistency
 - bc: State-of-the art propagator [Siala and O'Sullivan, 2016]

Experimental Protocol

- Models:
 - fr: SAT-formula
 - ac: Arc Consistency
 - bc: State-of-the art propagator [Siala and O'Sullivan, 2016]
- Mistral-2.0 Solver

Experimental Protocol

- Models:
 - fr: SAT-formula
 - ac: Arc Consistency
 - bc: State-of-the art propagator [Siala and O'Sullivan, 2016]
- Mistral-2.0 Solver
- Lexicographical branching (random, min-max random), activity-based search, impact-based search

Experimental Protocol

- Models:
 - fr: SAT-formula
 - ac: Arc Consistency
 - bc: State-of-the art propagator [Siala and O'Sullivan, 2016]
- Mistral-2.0 Solver
- Lexicographical branching (random, min-max random), activity-based search, impact-based search
- New challenging benchmarks: http://siala.github.io/sm/sm.zip

Experimental Protocol

- Models:
 - fr: SAT-formula
 - ac: Arc Consistency
 - bc: State-of-the art propagator [Siala and O'Sullivan, 2016]
- Mistral-2.0 Solver
- Lexicographical branching (random, min-max random), activity-based search, impact-based search
- New challenging benchmarks: http://siala.github.io/sm/sm.zip
- 5 randomised runs for every configuration
- 15 minutes cutoff for every run

Sex-Equal Stable Matching: Optimality Evaluation

Sex-Equal Stable Matching: Optimality Evaluation

- Clear dominance of the SAT formulation
- Arc Consistency does not pay off

Balanced Stable Matching: Optimality Evaluation

Sex-Equal Stable Matching: Solution Quality

Better Solutions with the SAT model

Arc Consistency does not pay off

Balanced Stable Matching: Solution Quality

Conclusions & Future Research

Insight Centre for Data Analytics

Conclusions & Future Research

Take-away message

• No need for implementing a sophisticated global constraint for stability. Use the rotations reformulation!

Conclusions & Future Research

Take-away message

• No need for implementing a sophisticated global constraint for stability. Use the rotations reformulation!

Future Research

- Other applications?
- Stable matching with ties?
- Stable matching with couples?
- One sided preferences?

Insight Centre for Data Analytics

References I

Bansal, V., Agrawal, A., and Malhotra, V. S. (2007). Polynomial time algorithm for an optimal stable assignment with multiple partners.

Theor. Comput. Sci., 379(3):317-328.

Gusfield, D. and Irving, R. W. (1989). *The Stable Marriage Problem: Structure and Algorithms.* MIT Press, Cambridge, MA, USA.

Siala, M. and O'Sullivan, B. (2016). Revisiting two-sided stability constraints.

In Integration of AI and OR Techniques in Constraint Programming - 13th International Conference, CPAIOR 2016, Banff, AB, Canada, May 29 - June 1, 2016, Proceedings, pages 342–357.