Centre for

Data Analytics

Insight

Insight Centre for Data Analytics

Rotation-Based Formulation for Stable

 MatchingMohamed Siala, Barry O'Sullivan

November 10, 2017

Matching Under Рreferences

Matching Under Preferences

```
Saries on Vol. }
mmeovtcal Computer Science
AIGORITHMICS OF
MATCHING UNDER
PREFERENCES
```



```
David F. Manlove
Witha foreword by Kart Meliloon

\section*{Matching Under Preferences}

- They are everywhere! (doctors to hospitals, students to universities, kidney exchange, etc)

\section*{Matching Under Preferences}

- They are everywhere! (doctors to hospitals, students to universities, kidney exchange, etc)
- Stability is the most desired property

\section*{Matching Under Preferences}

- They are everywhere! (doctors to hospitals, students to universities, kidney exchange, etc)
- Stability is the most desired property
- Modularity \& Flexibility of CP to solve hard problems?

\section*{Matching Under Preferences}

- They are everywhere! (doctors to hospitals, students to universities, kidney exchange, etc)
- Stability is the most desired property
- Modularity \& Flexibility of CP to solve hard problems?
- Global constraints for stable matching problems?

\section*{Matching Under Рreferences}

\section*{Matching Under Preferences}

- Assign man to woman
- Every woman has a personnel preference over men
- Every man has a preference list over woman
- Every man/woman is assigned to at most one partner from the opposite sex

\section*{Matching Under Preferences}

- Assign residents to hospitals
- Every resident has a personnel preference over hospitals
- Each hospital has a preference list over residents
- each hospital has a capacity

\section*{Matching Under Рreferences}

- Assign students to universities
- Every student has a personnel preference over universities
- Each university has a preference list over students
- each university has a capacity

\section*{Matching Under Рreferences}

- Assign workers to firms
- Every worker has a preference list over firms
- Every firm has a preference list over workers
- Every worker \(w\) is assigned to a number \(n_{w}\) of firms
- Every firm \(f\) is assigned to a number \(n_{f}\) of workers

\section*{Matching Under Preferences}

Context
- Two sets of agents
- Two sided preferences (complete or incomplete)
- Stable matching \(M\) :
- Capacity constraints satisfied
- There exists no pair of agents that prefer each other to their situation in \(M\)
- Eventually one can have side constraints

\section*{Many-to-Many Stable Matching}

\section*{Many-to-Many Stable Matching}
- \(W=\left\{w_{1}, w_{2}, \ldots, w_{n_{W}}\right\}:\) a set of workers

\section*{Many-to-Many Stable Matching}
- \(W=\left\{w_{1}, w_{2}, \ldots, w_{n_{W}}\right\}\) : a set of workers
- \(F=\left\{f_{1}, f_{2}, \ldots, f_{n_{F}}\right\}\) : a set of firms

\section*{Many-to-Many Stable Matching}
- \(W=\left\{w_{1}, w_{2}, \ldots, w_{n_{W}}\right\}\) : a set of workers
- \(F=\left\{f_{1}, f_{2}, \ldots, f_{n_{F}}\right\}\) : a set of firms
- Each agent has a preference list over agents of the other set

\section*{Many-to-Many Stable Matching}
- \(W=\left\{w_{1}, w_{2}, \ldots, w_{n_{W}}\right\}\) : a set of workers
- \(F=\left\{f_{1}, f_{2}, \ldots, f_{n_{F}}\right\}\) : a set of firms
- Each agent has a preference list over agents of the other set
- Each agent has a quota

\section*{Many-to-Many Stable Matching}
- \(W=\left\{w_{1}, w_{2}, \ldots, w_{n_{W}}\right\}\) : a set of workers
- \(F=\left\{f_{1}, f_{2}, \ldots, f_{n_{F}}\right\}\) : a set of firms
- Each agent has a preference list over agents of the other set
- Each agent has a quota
- A matching \(M\) is a set of acceptable pairs

\section*{Many-to-Many Stable Matching}
- \(W=\left\{w_{1}, w_{2}, \ldots, w_{n_{W}}\right\}\) : a set of workers
- \(F=\left\{f_{1}, f_{2}, \ldots, f_{n_{F}}\right\}\) : a set of firms
- Each agent has a preference list over agents of the other set
- Each agent has a quota
- A matching \(M\) is a set of acceptable pairs
- \(M\) is stable if the quota constraints are respected and no pair \(\langle w, f\rangle\) has an incentive to deviate from \(M\) by being matched together

\section*{Many-to-Many Stable Matching}
- \(W=\left\{w_{1}, w_{2}, \ldots, w_{n_{W}}\right\}\) : a set of workers
- \(F=\left\{f_{1}, f_{2}, \ldots, f_{n_{F}}\right\}\) : a set of firms
- Each agent has a preference list over agents of the other set
- Each agent has a quota
- A matching \(M\) is a set of acceptable pairs
- \(M\) is stable if the quota constraints are respected and no pair \(\langle w, f\rangle\) has an incentive to deviate from \(M\) by being matched together
- Solvable in \(O(L)\) time
- NP-Hard variants with side constraints

\section*{Example}
\begin{tabular}{|l|llllllll}
\hline\(w_{0}\) & 0 & 6 & 5 & 2 & 4 & 1 & 3 \\
\hline\(w_{1}\) & 6 & 1 & 4 & 5 & 0 & 2 & 3 \\
\hline\(w_{2}\) & 6 & 0 & 3 & 1 & 5 & 4 & 2 \\
\hline\(w_{3}\) & 3 & 2 & 0 & 1 & 4 & 6 & 5 \\
\hline\(w_{4}\) & 1 & 2 & 0 & 3 & 4 & 5 & 6 \\
\hline\(w_{5}\) & 6 & 1 & 0 & 3 & 5 & 4 & 2 \\
\hline\(w_{6}\) & 2 & 5 & 0 & 6 & 4 & 3 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|llllllll|}
\hline\(f_{0}\) & 2 & 1 & 6 & 4 & 5 & 3 & 0 \\
\hline\(f_{1}\) & 0 & 4 & 3 & 5 & 2 & 6 & 1 \\
\hline\(f_{2}\) & 2 & 5 & 0 & 4 & 3 & 1 & 6 \\
\hline\(f_{3}\) & 6 & 1 & 2 & 3 & 4 & 0 & 5 \\
\hline\(f_{4}\) & 4 & 6 & 0 & 5 & 3 & 1 & 2 \\
\hline\(f_{5}\) & 3 & 1 & 2 & 6 & 5 & 4 & 0 \\
\hline\(f_{6}\) & 4 & 6 & 2 & 1 & 3 & 0 & 5 \\
\hline
\end{tabular}

\section*{Dominance Relation on Stable Matchings}


\section*{Rotation}
- \(M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle\)
- \(M_{2}:\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle\)

\section*{Rotation}
- \(M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle\)
- \(M_{2}:\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle\)

\section*{Rotation}
- \(M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle\)
- \(M_{2}\) : \(\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle\)


\section*{Rotation}
- \(M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle\)
- \(M_{2}\) : \(\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle\)


\section*{Rotation}
- \(M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle\)
- \(M_{2}:\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle\)

- The sequence \(\rho_{1}=[\langle 1,4\rangle,\langle 5,0\rangle,\langle 6,5\rangle]\) is called a rotation

\section*{Rotation}
- \(M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle\)
- \(M_{2}:\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle\)

- The sequence \(\rho_{1}=[\langle 1,4\rangle,\langle 5,0\rangle,\langle 6,5\rangle]\) is called a rotation
- \(\langle 1,4\rangle\) is eliminated by \(\rho_{1}\)

\section*{Rotation}
- \(M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle\)
- \(M_{2}:\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle\)

- The sequence \(\rho_{1}=[\langle 1,4\rangle,\langle 5,0\rangle,\langle 6,5\rangle]\) is called a rotation
- \(\langle 1,4\rangle\) is eliminated by \(\rho_{1}\)
- \(\langle 1,5\rangle\) is produced by \(\rho_{1}\)

\section*{A Partial Order on Rotations}
\(\rho_{1} \prec \prec \rho_{2}\)
- \(\rho_{1}\) precedes \(\rho_{2}\) if \(\rho_{1}\) has to be applied before \(\rho_{2}\) in every succession of rotation eliminations leading from \(M_{0}\) to \(M_{z}\).

\section*{The Partial Order on Rotations}


\section*{Graph Poset}


\section*{Closed Subset}


\section*{Closed Subset}


Theorem [Gusfield and Irving, 1989, Bansal et al., 2007] There is a one-to-one mapping between closed subsets and stable matchings

\section*{Important Notions \& Properties}

\section*{Important Notions \& Properties}
- A pair is stable when it belongs to a stable matching

\section*{Important Notions \& Properties}
- A pair is stable when it belongs to a stable matching
- Some pairs are non-stable

\section*{Important Notions \& Properties}
- A pair is stable when it belongs to a stable matching
- Some pairs are non-stable
- Some pairs are fixed

\section*{Important Notions \& Properties}
- A pair is stable when it belongs to a stable matching
- Some pairs are non-stable
- Some pairs are fixed
- Every non-fixed stable pair \(\langle w, f\rangle \notin M_{z}\) can be eliminated by a unique rotation \(\rho_{e_{w f}}\)
- Every non-fixed stable pair \(\langle w, f\rangle \notin M_{0}\) can be produced by a unique rotation \(\rho_{p_{w f}}\)

\section*{Important Notions \& Properties}
- A pair is stable when it belongs to a stable matching
- Some pairs are non-stable
- Some pairs are fixed
- Every non-fixed stable pair \(\langle w, f\rangle \notin M_{z}\) can be eliminated by a unique rotation \(\rho_{e_{w f}}\)
- Every non-fixed stable pair \(\langle w, f\rangle \notin M_{0}\) can be produced by a unique rotation \(\rho_{p_{w f}}\)
- In \(O(L)\) time, one can compute:
- \(M_{0}, M_{z}\)
- The fixed, stable and non-stable pairs
- The set of rotations
- The graph poset
- \(\rho_{e_{w f}}\) and \(\rho_{p_{w f}}\)

\section*{Lemmas}
- Let \(M\) be a stable matching and \(S\) its closed subset

\section*{Lemmas}
- Let \(M\) be a stable matching and \(S\) its closed subset
- Let \(\left\langle w_{i}, f_{j}\right\rangle\) be a stable pair

\section*{Lemmas}
- Let \(M\) be a stable matching and \(S\) its closed subset
- Let \(\left\langle w_{i}, f_{j}\right\rangle\) be a stable pair
1. If \(\left\langle w_{i}, f_{j}\right\rangle \in M_{0}\), then \(\left\langle w_{i}, f_{j}\right\rangle \in M\) iff \(\rho_{e_{i j}} \notin S\).

\section*{Lemmas}
- Let \(M\) be a stable matching and \(S\) its closed subset
- Let \(\left\langle w_{i}, f_{j}\right\rangle\) be a stable pair
1. If \(\left\langle w_{i}, f_{j}\right\rangle \in M_{0}\), then \(\left\langle w_{i}, f_{j}\right\rangle \in M\) iff \(\rho_{e_{i j}} \notin S\).
2. Else, if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{z}\), then \(\left\langle w_{i}, f_{j}\right\rangle \in M\) iff \(\rho_{p_{i j}} \in S\).

\section*{Lemmas}
- Let \(M\) be a stable matching and \(S\) its closed subset
- Let \(\left\langle w_{i}, f_{j}\right\rangle\) be a stable pair
1. If \(\left\langle w_{i}, f_{j}\right\rangle \in M_{0}\), then \(\left\langle w_{i}, f_{j}\right\rangle \in M\) iff \(\rho_{e_{i j}} \notin S\).
2. Else, if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{z}\), then \(\left\langle w_{i}, f_{j}\right\rangle \in M\) iff \(\rho_{p_{i j}} \in S\).
3. Otherwise, \(\left\langle w_{i}, f_{j}\right\rangle \in M\) iff \(\rho_{p_{i j}} \in S \wedge \rho_{e_{i j}} \notin S\).

\section*{Rotation-based (SAT) Formulation}

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)
- Constraints
- Closed Subset: \(\forall \rho_{1} \prec \prec \rho_{2}: r_{2} \Longrightarrow r_{1}\)

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)
- Constraints
- Closed Subset: \(\forall \rho_{1} \prec \prec \rho_{2}: r_{2} \Longrightarrow r_{1}\)
- \(\forall\left\langle w_{i}, f_{j}\right\rangle\) :

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)
- Constraints
- Closed Subset: \(\forall \rho_{1} \prec \prec \rho_{2}: r_{2} \Longrightarrow r_{1}\)
- \(\forall\left\langle w_{i}, f_{j}\right\rangle\) :
\[
\text { 1. if }\left\langle w_{i}, f_{j}\right\rangle \in F P: x_{i, j}
\]

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)
- Constraints
- Closed Subset: \(\forall \rho_{1} \prec \prec \rho_{2}: r_{2} \Longrightarrow r_{1}\)
- \(\forall\left\langle w_{i}, f_{j}\right\rangle\) :
1. if \(\left\langle w_{i}, f_{j}\right\rangle \in F P: x_{i, j}\)
2. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in N S P: \neg x_{i, j}\)

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)
- Constraints
- Closed Subset: \(\forall \rho_{1} \prec \prec \rho_{2}: r_{2} \Longrightarrow r_{1}\)
- \(\forall\left\langle w_{i}, f_{j}\right\rangle\) :
1. if \(\left\langle w_{i}, f_{j}\right\rangle \in F P: x_{i, j}\)
2. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in N S P: \neg x_{i, j}\)
3. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{0}\), then \(x_{i, j}=\neg \neg r_{e_{j j}}\)

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)
- Constraints
- Closed Subset: \(\forall \rho_{1} \prec \prec \rho_{2}: r_{2} \Longrightarrow r_{1}\)
- \(\forall\left\langle w_{i}, f_{j}\right\rangle\) :
1. if \(\left\langle w_{i}, f_{j}\right\rangle \in F P: x_{i, j}\)
2. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in N S P: \neg x_{i, j}\)
3. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{0}\), then \(x_{i, j}=\neg r_{e_{i j}}\)
4. Else, if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{z}\), then \(x_{i, j}==r_{p i j}\)

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)
- Constraints
- Closed Subset: \(\forall \rho_{1} \prec \prec \rho_{2}: r_{2} \Longrightarrow r_{1}\)
- \(\forall\left\langle w_{i}, f_{j}\right\rangle\) :
1. if \(\left\langle w_{i}, f_{j}\right\rangle \in F P: x_{i, j}\)
2. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in N S P: \neg x_{i, j}\)
3. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{0}\), then \(x_{i, j}=\neg r_{e_{i j}}\)
4. Else, if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{z}\), then \(x_{i, j}==r_{p i j}\)
5. Otherwise, \(x_{i, j}==r_{p_{i j}} \wedge \neg r_{e_{i j}}\)

\section*{Rotation-based (SAT) Formulation}
- Variables
- A Boolean variable \(x_{i, j}\) for every pair \(\left\langle w_{i}, f_{j}\right\rangle\)
- A Boolean variable \(r_{k}\) for every rotation \(\rho_{k}\)
- Constraints
- Closed Subset: \(\forall \rho_{1} \prec \prec \rho_{2}: r_{2} \Longrightarrow r_{1}\)
- \(\forall\left\langle w_{i}, f_{j}\right\rangle\) :
1. if \(\left\langle w_{i}, f_{j}\right\rangle \in F P: x_{i, j}\)
2. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in N S P: \neg x_{i, j}\)
3. Else if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{0}\), then \(x_{i, j}=\neg r_{e_{i j}}\)
4. Else, if \(\left\langle w_{i}, f_{j}\right\rangle \in M_{z}\), then \(x_{i, j}==r_{p i j}\)
5. Otherwise, \(x_{i, j}==r_{p_{i j}} \wedge \neg r_{e_{i j}}\)
- Easily translated in SAT (Г)

\section*{Important Properties of the SAT Formula}

\section*{Important Properties of the SAT Formula}
- Let \(M 2 M(I, \mathcal{X}(M 2 M))\) be the stable matching constraint

\section*{Important Properties of the SAT Formula}
- Let \(M 2 M(I, \mathcal{X}(M 2 M))\) be the stable matching constraint
- Unit propagation on \(\Gamma\) does not maintain arc consistency

\section*{Important Properties of the SAT Formula}
- Let \(M 2 M(I, \mathcal{X}(M 2 M))\) be the stable matching constraint
- Unit propagation on \(\Gamma\) does not maintain arc consistency
- Theorem: Let \(\mathcal{D}\) be a domain such that unit propagation is performed without failure on \(\Gamma\). There exists at least a solution in \(\mathcal{D}\) that satisfies \(\Gamma\).

\section*{Arc Consistency}

\section*{Arc Consistency}

We know that..
- Unit Propagation takes \(O(L)\) time

\section*{Arc Consistency}

We know that..
- Unit Propagation takes \(O(L)\) time
- We know that two-watched literals does not need reversible data structures

\section*{Arc Consistency}

We know that..
- Unit Propagation takes \(O(L)\) time
- We know that two-watched literals does not need reversible data structures

\section*{Arc Consistency}
- Idea: use unit propagation as a support check
- Some assignments already have supports
- \(O\left(L^{2}\right)\) time

\section*{Arc Consistency}

\section*{Experimental Study}

\section*{Sex-Equal \& Balanced Stable Matching}

\section*{Experimental Study}

\section*{Sex-Equal \& Balanced Stable Matching}
- Let \(M\) be a stable marriage
- \(C_{M}^{m}\) is the sum of the ranks of each man's partner
- \(C_{M}^{w}\) is the sum of the ranks of each woman's partner

\section*{Experimental Study}

\section*{Sex-Equal \& Balanced Stable Matching}
- Let \(M\) be a stable marriage
- \(C_{M}^{m}\) is the sum of the ranks of each man's partner
- \(C_{M}^{w}\) is the sum of the ranks of each woman's partner
- Sex-Equal Stable matching: find a stable matching \(M\) with the minimum value of \(\left|C_{M}^{m}-C_{M}^{w}\right|\)

\section*{Experimental Study}

\section*{Sex-Equal \& Balanced Stable Matching}
- Let \(M\) be a stable marriage
- \(C_{M}^{m}\) is the sum of the ranks of each man's partner
- \(C_{M}^{w}\) is the sum of the ranks of each woman's partner
- Sex-Equal Stable matching: find a stable matching \(M\) with the minimum value of \(\left|C_{M}^{m}-C_{M}^{w}\right|\)
- Balanced stable matching: find a stable matching \(M\) with the minimum value of \(\max \left\{C_{M}^{m}, C_{M}^{w}\right\}\)

\section*{Experimental Protocol}

\section*{Experimental Protocol}
- Models:
- fr: SAT-formula
- ac: Arc Consistency
- bc: State-of-the art propagator [Siala and O'Sullivan, 2016]

\section*{Experimental Protocol}
- Models:
- fr: SAT-formula
- ac: Arc Consistency
- bc: State-of-the art propagator [Siala and O'Sullivan, 2016]
- Mistral-2.0 Solver

\section*{Experimental Protocol}
- Models:
- fr: SAT-formula
- ac: Arc Consistency
- bc: State-of-the art propagator [Siala and O'Sullivan, 2016]
- Mistral-2.0 Solver
- Lexicographical branching (random, min-max random), activity-based search, impact-based search

\section*{Experimental Protocol}
- Models:
- fr: SAT-formula
- ac: Arc Consistency
- bc: State-of-the art propagator [Siala and O'Sullivan, 2016]
- Mistral-2.0 Solver
- Lexicographical branching (random, min-max random), activity-based search, impact-based search
- New challenging benchmarks: http://siala.github.io/sm/sm.zip

\section*{Experimental Protocol}
- Models:
- fr: SAT-formula
- ac: Arc Consistency
- bc: State-of-the art propagator [Siala and O'Sullivan, 2016]
- Mistral-2.0 Solver
- Lexicographical branching (random, min-max random), activity-based search, impact-based search
- New challenging benchmarks: http://siala.github.io/sm/sm.zip
- 5 randomised runs for every configuration
- 15 minutes cutoff for every run

\section*{Sex-Equal Stable Matching: Optimality Evaluation}


\section*{Sex-Equal Stable Matching: Optimality Evaluation}

- Clear dominance of the SAT formulation
- Arc Consistency does not pay off

\section*{Balanced Stable Matching: Optimality Evaluation}


\section*{Sex-Equal Stable Matching: Solution Quality}

- Better Solutions with the SAT model
- Arc Consistency does not pay off

\section*{Balanced Stable Matching: Solution Quality}


\section*{Conclusions \& Future Research}

\section*{Conclusions \& Future Research}

\section*{Take-away message}
- No need for implementing a sophisticated global constraint for stability. Use the rotations reformulation!

\section*{Conclusions \& Future Research}

Take-away message
- No need for implementing a sophisticated global constraint for stability. Use the rotations reformulation!

Future Research
- Other applications?
- Stable matching with ties?
- Stable matching with couples?
- One sided preferences?


\section*{References I}


Bansal, V., Agrawal, A., and Malhotra, V. S. (2007).
Polynomial time algorithm for an optimal stable assignment with multiple partners.
Theor. Comput. Sci., 379(3):317-328.


Gusfield, D. and Irving, R. W. (1989).
The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Cambridge, MA, USA.


Siala, M. and O'Sullivan, B. (2016).
Revisiting two-sided stability constraints.
In Integration of AI and OR Techniques in Constraint Programming - 13th International Conference, CPAIOR 2016, Banff, AB, Canada, May 29 - June 1, 2016, Proceedings, pages 342-357.```

