Centre for Data Analytics

Insight Centre for Data Analytics

Finding Robust Solutions to Stable Marriage

Begüm Genç, <u>Mohamed Siala</u>, Gilles Simonin¹, Barry O'Sullivan

August 24, 2017

¹Institut Mines Telecom Atlantique

Context

"Change is the only constant in life." - Heraclitus

Insight Centre for Data Analytics

• A set of men $U = \{m_1, m_2, \dots, m_{n_1}\}$ and a set of woman $W = \{w_1, w_2, \dots, w_{n_2}\}$

- A set of men $U = \{m_1, m_2, \dots, m_{n_1}\}$ and a set of woman $W = \{w_1, w_2, \dots, w_{n_2}\}$
- Each person has an ordinal preference list over people of the opposite sex

- A set of men $U = \{m_1, m_2, \dots, m_{n_1}\}$ and a set of woman $W = \{w_1, w_2, \dots, w_{n_2}\}$
- Each person has an ordinal preference list over people of the opposite sex
- A *matching M* is a one-to-one correspondence between *U* and *W*

- A set of men $U = \{m_1, m_2, \dots, m_{n_1}\}$ and a set of woman $W = \{w_1, w_2, \dots, w_{n_2}\}$
- Each person has an ordinal preference list over people of the opposite sex
- A *matching M* is a one-to-one correspondence between *U* and *W*
- A matching is called *stable* when no *blocking pair* exists

- A set of men $U = \{m_1, m_2, \dots, m_{n_1}\}$ and a set of woman $W = \{w_1, w_2, \dots, w_{n_2}\}$
- Each person has an ordinal preference list over people of the opposite sex
- A *matching M* is a one-to-one correspondence between *U* and *W*
- A matching is called *stable* when no *blocking pair* exists
- A pair (i, j) is said to be *blocking* a matching M if i prefers j to M(i) and j prefers i to M(j).

Stability

Motivation

Insight Centre for Data Analytics

Motivation

Insight Centre for Data Analytics

Overview of the contributions

(*a*,*b*)-supermatch ([Ginsberg et al., 1998, Hebrard, 2007]) An (a, b)-supermatch is a stable matching in which if *a* pairs break up it is possible to find another stable matching by changing the partners of those *a* pairs and at most *b* other pairs

Overview of the contributions

(*a*,*b*)-supermatch ([Ginsberg et al., 1998, Hebrard, 2007]) An (a, b)-supermatch is a stable matching in which if *a* pairs break up it is possible to find another stable matching by changing the partners of those *a* pairs and at most *b* other pairs

Contributions (regarding the (1,b) case)

- Verification in polynomial time
- Three models to find the most robust solution
- Experimental study on random instances

Example

<i>m</i> ₀	0652413	W ₀	2164530
m_1	6145023	w ₁	0435261
<i>m</i> ₂	6031542	<i>w</i> ₂	2504316
<i>m</i> 3	3201465	W ₃	6123405
<i>m</i> ₄	1203456	W4	4605312
<i>m</i> 5	6103542	W5	3126540
<i>m</i> 6	2506431	W ₆	4621305

Lattice of Stable Matchings

Insight Centre for Data Analytics

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 4 \rangle, \langle 6, 0 \rangle$

- M_1 : $\langle 0, 2 \rangle, \langle 1, 4 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 0 \rangle, \langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle$, $\langle 1, 5 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 4 \rangle$, $\langle 6, 0 \rangle$

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 4 \rangle, \langle 6, 0 \rangle$

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 4 \rangle, \langle 6, 0 \rangle$

- M_1 : $\langle 0, 2 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 6 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 5, 0 \rangle$, $\langle 6, 5 \rangle$
- M_2 : $\langle 0, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 5, 4 \rangle, \langle 6, 0 \rangle$

- The sequence $\rho_1 = [\langle 1, 4 \rangle, \langle 5, 0 \rangle, \langle 6, 5 \rangle]$ is called a rotation
- We say that (1,4) is eliminated by ρ₁ and (1,5) is produced by ρ₁

Graph Poset

Graph Poset

Closed Subset

Insight Centre for Data Analytics

Closed Subset

Theorem [Gusfield and Irving, 1989]

There is a one-to-one mapping between closed subsets and stable matchings

Insight Centre for Data Analytics

Verification Problem

Given a stable matching M and an integer b, is M a (1,b)-supermatch?

Insight Centre for Data Analytics

- *M*: a stable matching
- *b*: is an integer

- M: a stable matching
- b: is an integer
- S: closed subset of M
- $\langle m, w \rangle$: couple to break-up
- *ρ_p*: rotation that produces (*m*, *w*)
- ρ_e : rotation that eliminates $\langle m, w \rangle$

- M: a stable matching
- *b*: is an integer
- S: closed subset of M
- $\langle m, w \rangle$: couple to break-up
- *ρ_p*: rotation that produces (*m*, *w*)
- ρ_e : rotation that eliminates $\langle m, w \rangle$
- S_{UP}: The largest closed subset ⊂ S that does not include ρ_p
- S_{DOWN}: The smallest closed subset ⊃ S that includes ρ_e

- M: a stable matching
- b: is an integer
- S: closed subset of M
- $\langle m, w \rangle$: couple to break-up
- *ρ_p*: rotation that produces (*m*, *w*)
- ρ_e : rotation that eliminates $\langle m, w \rangle$
- S_{UP}: The largest closed subset ⊂ S that does not include ρ_p
- S_{DOWN}: The smallest closed subset ⊃ S that includes ρ_e

Robust Solutions

Problem

Given a SM instance, find the most robust stable matching. That is, find a (1,b)-supermatch such that b is minimum

Genetic Algorithm

- Random population based on random closed subsets
- The evaluation of a solution is based on the verification procedure
- Crossover: Given S₁ and S₂, pick at random ρ₁ ∈ S₁, then add ρ₁ and all its predecessors to S₂
- Mutation: Given S and a random rotation ρ, if ρ ∉ S, then add ρ and all its predecessors to S. Otherwise, remove ρ and all its successors to S

Local Search: Key Idea

- Random solutions based on random closed subsets
- The evaluation of a solution is based on the verification procedure
- The neighbourhood of a solution *S* is defined by adding/removing one rotation to *S*

A CP model: Key Idea

- Model stable matching using closed subsets
- Rotation variables to represent the sets S_{UP} and S_{Down} for every men
- Count for each men the repair value (b) based on the verification procedure

Experimental Study

Insight Centre for Data Analytics

Experimental Study

Experimental Study: Large Instances

Conclusions & Future Research

Insight Centre for Data Analytics

August 24, 2017

Slide 20

Conclusions & Future Research

Contributions

- (*a*,*b*)-supermatch
- Verification in polynomial time
- Efficient models for finding robust solutions

Conclusions & Future Research

Contributions

- (*a*,*b*)-supermatch
- Verification in polynomial time
- Efficient models for finding robust solutions

Future Research

- Algorithmic Complexity?
- Improve the CP Model?
- The general case of (a,b)-supermatch?
- Other stable matching Problems?

*Picture taken from The New York Times

References I

Ginsberg, M. L., Parkes, A. J., and Roy, A. (1998). Supermodels and robustness. In *In AAAI/IAAI*, pages 334–339.

Gusfield, D. and Irving, R. W. (1989). *The Stable Marriage Problem: Structure and Algorithms.* MIT Press, Cambridge, MA, USA.

Hebrard, E. (2007).

Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South Wales.