Insight

Insight Centre for Data Analytics

Finding Robust Solutions to Stable Marriage

Begüm Genç, Mohamed Siala, Gilles Simonin¹, Barry O'Sullivan

August 24, 2017
${ }^{1}$ Institut Mines Telecom Atlantique

DCU

Context

Background

Background

- A set of men $U=\left\{m_{1}, m_{2}, \ldots, m_{n_{1}}\right\}$ and a set of woman $W=\left\{w_{1}, w_{2}, \ldots, w_{n_{2}}\right\}$

Background

- A set of men $U=\left\{m_{1}, m_{2}, \ldots, m_{n_{1}}\right\}$ and a set of woman $W=\left\{w_{1}, w_{2}, \ldots, w_{n_{2}}\right\}$
- Each person has an ordinal preference list over people of the opposite sex

Background

- A set of men $U=\left\{m_{1}, m_{2}, \ldots, m_{n_{1}}\right\}$ and a set of woman $W=\left\{w_{1}, w_{2}, \ldots, w_{n_{2}}\right\}$
- Each person has an ordinal preference list over people of the opposite sex
- A matching M is a one-to-one correspondence between U and W

Background

- A set of men $U=\left\{m_{1}, m_{2}, \ldots, m_{n_{1}}\right\}$ and a set of woman $W=\left\{w_{1}, w_{2}, \ldots, w_{n_{2}}\right\}$
- Each person has an ordinal preference list over people of the opposite sex
- A matching M is a one-to-one correspondence between U and W
- A matching is called stable when no blocking pair exists

Background

- A set of men $U=\left\{m_{1}, m_{2}, \ldots, m_{n_{1}}\right\}$ and a set of woman $W=\left\{w_{1}, w_{2}, \ldots, w_{n_{2}}\right\}$
- Each person has an ordinal preference list over people of the opposite sex
- A matching M is a one-to-one correspondence between U and W
- A matching is called stable when no blocking pair exists
- A pair $\langle i, j\rangle$ is said to be blocking a matching M if i prefers j to $M(i)$ and j prefers i to $M(j)$.

Stability

Motivation

\section*{| $\square \square$ |
| :--- |
| $\square \square \square$ |
| $\square \square \square$ |
| Capacity $=2$ |}

Motivation

Overview of the contributions

(a, b)-supermatch ([Ginsberg et al., 1998, Hebrard, 2007]) An (a, b)-supermatch is a stable matching in which if a pairs break up it is possible to find another stable matching by changing the partners of those a pairs and at most b other pairs

Overview of the contributions

(a, b)-supermatch ([Ginsberg et al., 1998, Hebrard, 2007]) An (a, b)-supermatch is a stable matching in which if a pairs break up it is possible to find another stable matching by changing the partners of those a pairs and at most b other pairs
Contributions (regarding the $(1, b)$ case)

- Verification in polynomial time
- Three models to find the most robust solution
- Experimental study on random instances

Example

| m_{0} | 0 | 6 | 5 | 2 | 4 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| m_{1} | 6 | 1 | 4 | 5 | 0 | 2 | 3 |
| m_{2} | 6 | 0 | 3 | 1 | 5 | 4 | 2 |
| m_{3} | 3 | 2 | 0 | 1 | 4 | 6 | 5 |
| m_{4} | 1 | 2 | 0 | 3 | 4 | 5 | 6 |
| m_{5} | 6 | 1 | 0 | 3 | 5 | 4 | 2 |
| m_{6} | 2 | 5 | 0 | 6 | 4 | 3 | 1 |

w_{0}	2	1	6	4	5	3	0	
w_{1}	0	4	3	5	2	6	1	
w_{2}	2	5	0	4	3	1	6	
w_{3}	6	1	2	3	4	0	5	
w_{4}	4	6	0	5	3	1	2	
w_{5}	3	1	2	6	5	4	4	0
w_{6}	4	6	2	1	3	0	5	

Lattice of Stable Matchings

Rotation

- $M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle$
- $M_{2}:\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle$

Rotation

- $M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle$
- $M_{2}:\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle$

Rotation

- $M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle$
- M_{2} : $\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle$

Rotation

- $M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle$
- M_{2} : $\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle$

Rotation

- $M_{1}:\langle 0,2\rangle,\langle 1,4\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,0\rangle,\langle 6,5\rangle$
- $M_{2}:\langle 0,2\rangle,\langle 1,5\rangle,\langle 2,6\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 5,4\rangle,\langle 6,0\rangle$

- The sequence $\rho_{1}=[\langle 1,4\rangle,\langle 5,0\rangle,\langle 6,5\rangle]$ is called a rotation
- We say that $\langle 1,4\rangle$ is eliminated by ρ_{1} and $\langle 1,5\rangle$ is produced by ρ_{1}

Graph Poset

Graph Poset

Closed Subset

Closed Subset

Theorem [Gusfield and Irving, 1989]

There is a one-to-one mapping between closed subsets and stable matchings

Verification

Verification

Verification Problem

Given a stable matching M and an integer b, is M a ($1, b$)-supermatch?

Verification

Verification

- M : a stable matching
- b : is an integer

Verification

- M: a stable matching
- b : is an integer
- S : closed subset of M
- $\langle m, w\rangle$: couple to break-up
- ρ_{p} : rotation that produces $\langle m, w\rangle$
- ρ_{e} : rotation that eliminates $\langle m, w\rangle$

Verification

- M: a stable matching
- b : is an integer
- S : closed subset of M
- $\langle m, w\rangle$: couple to break-up
- ρ_{ρ} : rotation that produces $\langle m, w\rangle$
- ρ_{e} : rotation that eliminates $\langle m, w\rangle$
- $S_{U P}:$ The largest closed subset $\subset S$ that does not include ρ_{p}
- $S_{D O W N}$: The smallest closed subset $\supset S$ that includes ρ_{e}

Verification

- M : a stable matching
- b : is an integer
- S: closed subset of M
- $\langle m, w\rangle$: couple to break-up
- ρ_{ρ} : rotation that produces $\langle m, w\rangle$
- ρ_{e} : rotation that eliminates $\langle m, w\rangle$
- $S_{u p}$: The largest closed subset $\subset S$ that does not include ρ_{p}

- $S_{\text {Down: }}$ The smallest closed subset $\supset S$ that includes ρ_{e}

Robust Solutions

Problem

Given a SM instance, find the most robust stable matching. That is, find a $(1, b)$-supermatch such that b is minimum

Genetic Algorithm

- Random population based on random closed subsets
- The evaluation of a solution is based on the verification procedure
- Crossover: Given S_{1} and S_{2}, pick at random $\rho_{1} \in S_{1}$, then add ρ_{1} and all its predecessors to S_{2}
- Mutation: Given S and a random rotation ρ, if $\rho \notin S$, then add ρ and all its predecessors to S. Otherwise, remove ρ and all its successors to S

Local Search: Key Idea

- Random solutions based on random closed subsets
- The evaluation of a solution is based on the verification procedure
- The neighbourhood of a solution S is defined by adding/removing one rotation to S

A CP model: Key Idea

- Model stable matching using closed subsets
- Rotation variables to represent the sets $S_{U P}$ and $S_{\text {Down }}$ for every men
- Count for each men the repair value (b) based on the verification procedure

Experimental Study

Experimental Study

Experimental Study: Large Instances

Conclusions \& Future Research

Conclusions \& Future Research

Contributions

- (a, b)-supermatch
- Verification in polynomial time
- Efficient models for finding robust solutions

Conclusions \& Future Research

Contributions

- (a, b)-supermatch
- Verification in polynomial time
- Efficient models for finding robust solutions

Future Research

- Algorithmic Complexity?
- Improve the CP Model?
- The general case of (a,b)-supermatch ?
- Other stable matching Problems?

*Picture taken from The New York Times

References I

Ginsberg, M. L., Parkes, A. J., and Roy, A. (1998).
Supermodels and robustness.
In In AAAI/IAAI, pages 334-339.
Gusfield, D. and Irving, R. W. (1989).
The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Cambridge, MA, USA.
国
Hebrard, E. (2007).
Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South Wales.

